- PII
- 10.31857/S0374064125040053-1
- DOI
- 10.31857/S0374064125040053
- Publication type
- Article
- Status
- Published
- Authors
- Volume/ Edition
- Volume 61 / Issue number 4
- Pages
- 490-503
- Abstract
- The global solvability and local uniqueness of boundary value problem’s solutions for stationary magnetic hydrodynamic equations for heat conducting fluid with variable coefficients are proved. Maximum and minimum principle for the temperature is established.
- Keywords
- магнитная гидродинамика теплопроводная жидкость краевая задача переменные коэффициенты обобщённая модель Буссинеска глобальная разрешимость локальная единственность принцип максимума
- Date of publication
- 19.09.2025
- Year of publication
- 2025
- Number of purchasers
- 0
- Views
- 10
References
- 1. Bermudez, A. Analysis of two stationary magnetohydrodynamics systems of equations including Joule heating / A. Bermudez, R. Munoz-Sola, R. Vazquez // J. Math. Anal. Appl. — 2010. — V. 368. — P. 444–468.
- 2. Brizitskii, R.V. Boundary value and control problems for the stationary magnetic hydrodynamic equations of heat conducting fluid with variable coefficients / R.V. Brizitskii // J. Dynam. Control Syst. — 2024. — V. 30, № 4. — P. 39.
- 3. Alekseev, G.V. Boundary control problems for the stationary magnetic hydrodynamic equations in the domain with non-ideal boundary / G.V. Alekjseev, R.V. Brizitskii // J. Dynam. Control Syst. — 2020. — V. 26. — P. 641–661.
- 4. Brizitskii, R.V. Analysis of inhomogeneous boundary value problems for generalized Boussinesq model of mass transfer / R.V. Brizitskii, Z.Y. Saritskaia // J. Dynam. Control Syst. — 2023. — V. 29, № 4. — P. 1809–1828.
- 5. Солонников, В.А. О некоторых стационарных краевых задачах магнитной гидродинамики / В.А. Солонников // Тр. Мат. ин-та имени В.А. Стеклова. — 1960. — Т. 59. — С. 174–187.
- 6. Solonnikov, V.A., On some stationary boundary value problems of magnetic hydrodynamics, Trudy Steklov Inst. Mat., 1960, vol. 59, pp. 174–187.
- 7. Gunzburger, M.D. On the existence, uniqueness, and finite element approximation of solution of the equation of stationary, incompressible magnetohydrodynamics / M.D. Gunzburger, A.J. Meir, J.S. Peterson // Math. Comp. — 1991. — V. 56. — P. 523–563.
- 8. Алексеев, Г.В. Разрешимость задач управления для стационарных уравнений магнитной гидродинамики вязкой жидкости / Г.В. Алексеев // Сиб. мат. журн. — 2004. — Т. 45, № 2. — С. 243–263.
- 9. Alekseev, G.V., Solvability of control problems for stationary equations of magnetohydrodynamics of a viscous fluid, Siberian Math. J., 2004, vol. 45, no. 2, pp. 197–213.
- 10. Schotzau, D. Mixed finite element methods for stationary incompressible magneto-hydrodynamics / D. Schotzau // Numer. Math. — 2004. — V. 96. — P. 771–800.
- 11. Бризицкий, Р.В. О разрешимости краевых задач для стационарных уравнений магнитной гидродинамики с неоднородными смешанными условиями / Р.В. Бризицкий, Д.А. Терешко // Дифференц. уравнения. — 2007. — Т. 43, № 2. — С. 239–250.
- 12. Brizitskii, R.V. and Tereshko, D.A., On the solvability of boundary value problems for the stationary magnetohydrodynamic equations with inhomogeneous mixed boundary conditions, Differ. Equat., 2007, vol. 43, no. 2, pp. 246–258.
- 13. Zeng, Y. Steady states of Hall-MHD system / Y. Zeng // J. Math. Anal. Appl. — 2017. — V. 451, № 2. — P. 757–793.
- 14. Villamizar-Roa, E.J. Very weak solutions for the magnetohydrodynamic type equations / E.J. Villamizar-Roa, H. Lamos-Diaz, G. Arenas-Dias // Discr. Contin. Dynam. Syst. Ser. B. — 2008. — № 10. — P. 957–972.
- 15. Alekseev, G. Solvability of the boundary value problem for stationary magnetohydrodynamic equations under mixed boundary conditions for the magnetic field / G. Alekseev, R. Brizitskii // Appl. Math. Let. — 2014. — V. 32. — P. 13–18.
- 16. Mallea-Zepeda, E. Control problem for a magneto-micropolar flow with mixed boundary conditions for the velocity field / E. Mallea-Zepeda, E. Ortega-Torres // J. Dynam. Control Syst. — 2019. — V. 25. — P. 599–618.
- 17. Барановский, Е.С. О модели протекания неравномерно нагретой вязкой жидкости через ограниченную область / Е.С. Барановский, А.А. Домнич // Дифференц. уравнения. — 2020. — Т. 56, № 3. — С. 317–327.
- 18. Baranovskii, E.S. and Domnich, A.A., Model of a nonuniformly heated viscous flow through a bounded domain, Differ. Equat., 2020, vol. 56, no. 3, pp. 304–314.
- 19. Chebotarev, A.Y. Problem of radiation heat exchange with boundary conditions of the Cauchy type / A.Y. Chebotarev, A.E. Kovtanyuk, N.D. Botkin // Commun. Nonlin. Sci. Numer. Simul. — 2019. — V. 75. — P. 262–269.
- 20. R˚uˇziˇcka, M. Steady flows of Cosserat–Bingham fluids / M. R˚uˇziˇcka, V. Shelukhin, M.M. dos Santos // Math. Meth. Appl. Sci. — 2017. — V. 40. — P. 2746–2761.
- 21. Mamontov, A.E. Global unique solvability of the initial-boundary value problem for the equations of one-dimensional polytropic flows of viscous compressible multifluids / A.E. Mamontov, D.A. Prokudin // J. Math. Fluid Mech. — 2019. — V. 21. — Art. 9.
- 22. Alonso, A. Some remarks on the characterization of the space of tangential traces of (rot; Ω) and the construction of an extension operator / A. Alonso, A. Valli // Manuscripta Math. — 1997. — V. 89. — P. 159–178.
- 23. Алексеев, Г.В. Оптимизация в стационарных задачах тепломассопереноса и магнитной гидродинамики / Г.В. Алексеев. — М. : Научный мир, 2010. — 410 c.
- 24. Alekseev, G.V., Optimizatsiya v statsionarnykh zadachakh teplomassoperenosa i magnitnoy gidrodinamiki (Optimization in the Stationary Problems of the Heat-Mass Transfer and Magnetic Hydrodynamics), Moscow: Nauchnyy Mir, 2010.
- 25. Gilbarg, D. Elliptic Partial Differential Equations of Second Order. 2nd ed. / D. Gilbarg, N.S. Trudinger. — Berlin ; Heidelberg : Springer, 2001. — 518 p.