RAS MathematicsДифференциальные уравнения Differential Equations

  • ISSN (Print) 0374-0641
  • ISSN (Online) 3034-5030

ASYMPTOTICS OF EIGENVALUES AND EIGENFUNCTIONS OF THE STURM–LIOUVILLE OPERATOR WITH SINGULAR POTENTIAL ON A STAR GRAPH. I

PII
10.31857/S0374064125020026-1
DOI
10.31857/S0374064125020026
Publication type
Article
Status
Published
Authors
Volume/ Edition
Volume 61 / Issue number 2
Pages
162-176
Abstract
Spectral problems on a star-graph consisting of three edges with a Sturm–Liouville operator defined on each of them are investigated. The spectral properties of such operators have been studied, in particular, asymptotic formulas for eigenvalues and eigenfunctions of the operator with Dirichlet boundary conditions at free ends and continuity and Kirchhoff conditions at a common vertex have been obtained. The potential in the Sturm–Liouville problem is assumed to be singular, it is a derivative of a quadratically summable function in sense of distributions.
Keywords
дифференциальный оператор на графах оператор Штурма–Лиувилля спектральная задача сингулярный потенциал
Date of publication
19.09.2025
Year of publication
2025
Number of purchasers
0
Views
5

References

  1. 1. Ruedenberg, K. Free-electron network model for conjugated systems. I. Theory / K. Ruedenberg, W.S. Scherr // J. Chem. Physics. — 1953. — V. 21, № 9. — P. 1565–1581.
  2. 2. Kuchment, P. Graph models for waves in thin structures / P. Kuchment // Waves in Random Media. — 2002. — V. 12, № 4. — P. R1–R24.
  3. 3. Kuchment, P. Quantum graphs: I. Some basic structures / P. Kuchment // Waves in Random Media. — 2004. — V. 14, № 1. — P. 107–128.
  4. 4. Proceedings of Symposia in Pure Mathematics. V. 77. Analysis of Graphs and its Applications / Eds. P. Exner, J.P. Keating, P. Kuchment [et al.]. — Cambridge : Amer. Math. Soc., 2007. — 718 p.
  5. 5. Дифференциальные уравнения на геометрических графах / Ю.В. Покорный, О.М. Пенкин, В.Л. Прядиев [и др.]. — М. : Физматлит, 2005. — 272 с.
  6. 6. Yurko, V. Inverse spectral problems for Sturm–Liouville operators on graphs / V. Yurko // Inverse Problems. — 2005. — V. 21, № 3. — P. 1075–1086.
  7. 7. Bondarenko, N. Inverse problems for the differential operator on the graph with a cycle with different orders on different edges / N. Bondarenko // Tamkang J. Math. — 2015. — V. 46, № 3. — P. 229–243.
  8. 8. Бурлуцкая, М.Ш. Краевая задача на геометрическом графе–звезде с нелинейным условием в узле / М.Ш. Бурлуцкая, М.Б. Зверева, М.И. Каменский // Мат. заметки. — 2023. — Т. 114, № 2. — С. 316–320.
  9. 9. Садовничий, В.А. Обратная задача Штурма–Лиувилля с нераспадающимися краевыми условиями на геометрическом графе / В.А. Садовничий, Я.Т. Султанаев, А.М. Ахтямов // Дифференц. уравнения. — 2019. — Т. 55, № 2. — С. 193–202.
  10. 10. Zhabko, A.P. Uniqueness solution to the inverse spectral problem with distributed parameters on the graph–star / A.P. Zhabko, K.B. Nurtazina, V.V. Provotorov // Vestnik of Saint Petersburg University. Appl. Math. Comput. Sci. Control Proc. — 2020. — V. 16, № 2. — P. 129–143.
  11. 11. Савчук, А.М. Операторы Штурма–Лиувилля с сингулярными потенциалами / А.М. Савчук, А.А. Шкаликов // Мат. заметки. — 1999. — Т. 66, № 6. — С. 897–912.
  12. 12. Савчук, А.М. Операторы Штурма–Лиувилля с потенциалами–распределениями / А.М. Савчук, А.А. Шкаликов // Тр. Моск. мат. об-ва. — 2003. — Т. 64. — С. 159–212.
  13. 13. Савчук, А.М. Спектральный анализ одномерной системы Дирака с суммируемым потенциалом и оператора Штурма–Лиувилля с коэффициентами–распределениями / А.М. Савчук, И.В. Садовничая // Соврем. математика. Фунд. направления. — 2020. — Т. 66, № 3. — С. 373–530.
  14. 14. Савчук, А.М. Прямые и обратные спектральные задачи для оператора Штурма–Лиувилля и системы Дирака : дис. . . . д-ра физ.-мат. наук / А.М. Савчук. — М., 2019. — 334 с.
QR
Translate

Indexing

Scopus

Scopus

Scopus

Crossref

Scopus

Higher Attestation Commission

At the Ministry of Education and Science of the Russian Federation

Scopus

Scientific Electronic Library