- PII
- 10.31857/S0374064125010021-1
- DOI
- 10.31857/S0374064125010021
- Publication type
- Article
- Status
- Published
- Authors
- Volume/ Edition
- Volume 61 / Issue number 1
- Pages
- 13-21
- Abstract
- The instability and stability of solutions of the stochastic system describing the flow of a viscoelastic liquid are investigated. It is shown that for certain values of the parameters included in the equations of the system, the existence of unstable and stable invariant spaces. For unstable case, the stabilization problem is solved based on the feedback principle.
- Keywords
- стохастическое уравнение соболевского типа инвариантное пространство стабилизация
- Date of publication
- 19.09.2025
- Year of publication
- 2025
- Number of purchasers
- 0
- Views
- 13
References
- 1. Осколков, А.П. Начально-краевые задачи для уравнений движения жидкостей Кельвина–Фойгта и Олдройта / А.П. Осколков // Тр. Мат. ин-та им. В.А. Стеклова. — 1988. — Т. 179. — С. 126–164.
- 2. Oskolkov, A.P., Initial boundary value problems for equations of motion of Kelvin–Voigt and Oldroit fluids, Trudi Mat. in-ta AN SSSR, 1988, vol. 179, pp. 126–164.
- 3. Течения полимерных растворов при наличии конвективных ускорений / В.Б. Амфилохиев, Я.И. Войткунский, Н.П. Мазаева, Я.И. Ходорковский // Тр. Ленингр. кораблестроит. ин-та. — 1975. — Т. 96. — С. 3–9.
- 4. Amfilohiev, V.B., Voitkunsky, Ya.I., Mazaeva, N.P., and Khodorkovskii, Ya.I., Flows of polymer structures in the presence of convective accelerations, Tr. Leningr. korablestr. in-ta, 1975, vol. 96, pp. 3–9.
- 5. Turning bacteria suspensions into superfluids / H.M. Lopez, J. Gachelin, C. Douarche [et al.] // Phys. Rev. Lett. — 2015. — V. 115. — Art. 028301.
- 6. Малкин, А.Я. Неустойчивость при течении растворов и расплавов полимеров / А.Я. Малкин // Высокомол. соед. Сер. С. — 2006. — T. 48, № 7. — C. 1241–1262.
- 7. Malkin, A.Ya., Instability during the flow of solutions and melts of polymers, High Molecular Weight Compounds. Series C, 2006, vol. 48, no. 7, pp. 1241–1262.
- 8. Gliklikh, Yu.E. Global and Stochastic Analysis with Applications to Mathematical Physics / Yu.E. Gliklikh. — London ; Dordrecht ; Heidelberg ; New York : Springer, 2011. — 436 p.
- 9. Свиридюк, Г.А. Динамические модели соболевского типа с условием Шоуолтера–Сидорова и аддитивными “шумами” / Г.А. Свиридюк, Н.А. Манакова // Вестн. Южно-Урал. гос. ун-та. Сер. Мат. моделирование и программирование. — 2014. — Т. 7, № 1. — С. 90–103.
- 10. Sviridyuk, G.A. and Manakova, N.A., Dynamic models of the Sobolev type with the Showalter–Sidorov condition and additive “noises”, Bull. of the South Ural State University. Series: Mathematical Modelling, Programming and Computer Software, 2014, vol. 7, no. 1, pp. 90–103.
- 11. Favini, A. Linear Sobolev type equations with relatively
- 12. Favini, A. Linear Sobolev type equations with relatively
- 13. Favini, A. One class of Sobolev type equations of higher order with additive “white noise” / A. Favini, G.A. Sviridyuk, A.A. Zamyshlyaeva // Commun. Pure Appl. Anal. — 2016. — V. 15, № 1. — P. 185–196.
- 14. Favini, A. Multipoint initial-final value problem for dynamical Sobolev-type equation in the space of noises / A. Favini, S.A. Zagrebina, G.A. Sviridyuk // Electron. J. Differ. Equat. — 2018. — V. 2018, № 128. — P. 1–10.
- 15. Favini, A. The multipoint initial-final value condition for the Hoff equations on geometrical graph in spaces of
- 16. Kitaeva, O.G. Invariant spaces of Oskolkov stochastic linear equations on the manifold / O.G. Kitaeva // Вестн. Южно-Урал. гос. ун-та. Сер. Математика. Механика. Физика. — 2021. — Т. 13, № 2. — С. 5–10.
- 17. Kitaeva, O.G., Invariant spaces of Oskolkov stochastic linear equations on the manifold, Bull. of the South Ural State University. Series: Mathematics. Mechanics. Physics, 2021, vol. 13, no. 2, pp. 5–10.
- 18. Kitaeva, O.G. Exponential dichotomies of a non-classical equations of differential forms on a twodimensional torus with “noises” / O.G. Kitaeva // J. Comp. Engineer. Math. — 2019. — V. 6, № 3. — P. 26–38.
- 19. Kitaeva, O.G. Stable and unstable invariant spaces of one stochastic non-classical equation with a relatively radial operator on a 3-torus / O.G. Kitaeva // J. Comp. Engineer. Math. — 2020. — V. 7, № 2. — P. 40–49.
- 20. Kitaeva, O.G. Exponential dichotomies of a stochastic non-classical equation on a two-dimensional sphere / O.G. Kitaeva // J. Comp. Engineer. Math. — 2021. — V. 8, № 1. — P. 60–67.
- 21. Свиридюк, Г.А. Об одной модели динамики несжимаемой вязкоупругой жидкости / Г.А. Свиридюк // Изв. вузов. Математика. — 1988. — № 1. — C. 74–79.
- 22. Sviridyuk, G.A., On a model of the dynamics of an incompressible viscoelastic fluid, Izv. vuzov. Matematika, 1988, no. 1, pp. 74–79.
- 23. Yakupov, M.M. The Oskolkov System with a multipoint initial-final value condition / M.M. Yakupov, A.S. Konkina // J. Comp. Engineer. Math. — 2022. — V. 9, № 4. — P. 44–50.
- 24. Свиридюк, Г.А. Задачи Шоуолтера–Сидорова и Коши для линейного уравнения Дзекцера с краевыми условиями Вентцеля и Робена в ограниченной области / Г.А. Свиридюк, Н.С. Гончаров, С.А. Загребина // Вестн. Южно-Урал. гос. ун-та. Сер. Математика. Механика. Физика. — 2022. — Т. 14, № 1. — С. 50–63.
- 25. Sviridyuk, G.A., Goncharov, N.S., and Zagrebina, S.A., Showalter–Sidorov and Cauchy problems for the Dzekzer linear equation with Wentzel and Robin boundary conditions in a bounded domain, Bull. of the South Ural State University. Series: Mathematics. Mechanics. Physics, 2022, vol. 14, no. 1, pp. 50–63.