RAS MathematicsДифференциальные уравнения Differential Equations

  • ISSN (Print) 0374-0641
  • ISSN (Online) 3034-5030

A POSTERIORI ERROR ESTIMATES FOR APPROXIMATE SOLUTIONS OF THE OBSTACLE PROBLEM FOR THE

PII
10.31857/S0374064124100099-1
DOI
10.31857/S0374064124100099
Publication type
Article
Status
Published
Authors
Volume/ Edition
Volume 60 / Issue number 10
Pages
1407-1421
Abstract
The paper is concerned with a functional identity and estimates which are fulfilled for the measures of deviations from exact solutions of the obstacle problem for the
Keywords
задача со свободными границами оператор
Date of publication
18.09.2025
Year of publication
2025
Number of purchasers
0
Views
11

References

  1. 1. Lions, J.-L. Variational inequalities / J.-L. Lions, G. Stampacchia // Comm. Pure Appl. Math. — 1967. — V. 20. — P. 493-519.
  2. 2. Petrosyan, A. Regularity of Free Boundaries in Obstacle-Type Problems / A. Petrosyan, H. Shagholian, N.N. Uraltseva. — Providence : American Mathematical Society, 2012. — 221 p.
  3. 3. Choe, H.J. On the obstacle problem for quasilinear elliptic equations of р-Laplacian type / H.J. Choe, J.L. Lewis // SIAM J. Math. Anal. — 1991. — V. 22, № 3. — P. 623-638.
  4. 4. Andersson J. Optimal regularity for the obstacle problem for the р-Laplacian / J. Andersson, E. Lindgren, H. Shahgholian // J. Differ. Equat. — 2015. — V. 259, № 6. — P. 2167-2179.
  5. 5. Jouvet, G. Steady, shallow ice sheets as obstacle problems: well-posedness and finite element approximation / G. Jouvet, E. Bueler // SIAM J. Appl. Math. — 2012. — V. 72, № 4. — P. 1292-1314.
  6. 6. Lewicka, M. The obstacle problem for the р-Laplacian via optimal stopping of tug-of-war games / M. Lewicka, J.J. Manfredi // Probab. Theory Related Fields. — 2017. — V. 167, № 1-2. — P. 349-378.
  7. 7. On the porosity of free boundaries in degenerate variational inequalities / L. Karp, T. Kipelainen, A. Petrosyan, H. Shagholian // J. Differ. Equat. — 2000. — V. 164, № 1. — P. 110-117.
  8. 8. Lee, K. Hausdorff measure and stability for the p-obstacle problem (2
  9. 9. Rodrigues, J.F. Stability remarks to the obstacle problem for p-Laplacian type equations / J.F. Rodrigues // Calc. Var. Partial Differ. Equat. — 2005. — V. 23, № 1. — P. 51-65.
  10. 10. Falk, R.S. Error estimates for approximation of a class of a variational inequalities / R.S. Falk // Math. Comp. — 1974. — V. 28. — P. 963-971.
  11. 11. Chen, Z., Residual type a posteriori error estimates for elliptic obstacle problems / Z. Chen, R. Nochetto // Numer. Math. — 2000. — V. 84. — P. 527—548.
  12. 12. Repin, S.I. Accuracy of Mathematical Models — Dimension Reduction, Homogenization, and Simplification / S.I. Repin, S.A. Sauter. — Zurich : European Mathematical Society, 2020. — 317 p.
  13. 13. Repin, S.I. A posteriori error estimation for variational problems with uniformly convex functionals / S.I. Repin // Math. Comp. — 2000. — V. 69, № 230. — P. 481-500.
  14. 14. Репин, С.И. Апостериорные тождества для мер отклонений от точных решений нелинейных краевых задач / С.И. Репин // Журн. вычислит. математики и мат. физики. — 2023. — Т. 63, № 6. — С. 896-919.
  15. 15. Repin, S. Error identities for variational problems with obstacles / S. Repin, J. Valdman // ZAMM Z. Angew. Math. Mech. — 2018. — Bd. 98, № 4. — S. 635-658.
  16. 16. Apushkinskaya D.E. Thin obstacle problem: estimates of the distance to the exact solution / D.E. Apushkinskaya, S.I. Repin // Interfaces Free Bound. — 2018. — V. 20, № 4. — P. 511-531.
  17. 17. Апушкинская, Д.Е. Бигармоническая задача с препятствием: гарантированные и вычисляемые оценки ошибок для приближённых решений / Д.Е. Апушкинская, С.И. Репин // Журн. вычислит. математики и мат. физики. — 2020. — Т. 60, № 11. — С. 1881-1897.
  18. 18. Apushkinskaya, D. Functional a posteriori error estimates for the parabolic obstacle problem / D. Apushkinskaya, S. Repin // Comput. Methods Appl. Math. — 2022. — V. 22, № 2. — P. 259276.
  19. 19. Sharp numerical inclusion of the best constant for embedding H01 (Q) < Lp(Q) on bounded convex domain / K. Tanaka, K. Sekine, M. Mizuguchi, S. Oishi // J. Comput. Appl. Math. — 2017. — V. 311 — P. 306-313.
  20. 20. Rossi, J.D. Optimal regularity at the free boundary for the infinity obstacle problem / J.D. Rossi, E.V. Teixeira, J.V. Urbano // Interfaces Free Bound. — 2015. — V. 17, № 3. — P. 381-398.
QR
Translate

Indexing

Scopus

Scopus

Scopus

Crossref

Scopus

Higher Attestation Commission

At the Ministry of Education and Science of the Russian Federation

Scopus

Scientific Electronic Library