- PII
- 10.31857/S0374064124090071-1
- DOI
- 10.31857/S0374064124090071
- Publication type
- Article
- Status
- Published
- Authors
- Volume/ Edition
- Volume 60 / Issue number 9
- Pages
- 1241-1260
- Abstract
- We constructed a numerical method for the one-dimensional hypersingular integral equation which uses sparse matrix approximations. This method has the same convergence order as conventional methods for hypersingular integral equations but the new method is more effective in both memory and arithmetic operations.
- Keywords
- гиперсингулярное интегральное уравнение вейвлет Хаара кратномасштабный метод для интегрального уравнения
- Date of publication
- 19.09.2025
- Year of publication
- 2025
- Number of purchasers
- 0
- Views
- 10
References
- 1. Гахов, Ф.Д. Краевые задачи / Ф.Д. Гахов. — М. : Физматлит, 1958. — 545 c.
- 2. Сетуха, А.В. Численные методы в интегральных уравнениях и их приложения / А.В. Сетуха. — М. : Аргамак-Медиа, 2014. — 256 c.
- 3. Захаров, Е.В. Численное решение трёхмерных задач дифракции элетромагнитных волн на системе идеально проводящих поверхностей методом гиперсингулярных интегральных уравнений / Е.В. Захаров, Г.В. Рыжаков, А.В Сетуха // Дифференц. уравнения. — 2014. — Т. 55, № 9. — С. 1253–1263.
- 4. Beylkin, G. Fast wavelet transforms and numerical algorithms. I / G. Beylkin, R. Koifman, V. Rokhlin // Comm. Pure Appl. Math. — 1991. — V. 44. — P. 141–183.
- 5. Chen, Z. Multiscale Methods for Fredholm Integral Equations / Z. Chen, C.A. Micchelli, Y. Xu. — Cambridge : Cambridge University Press, 2015.
- 6. Aparinov, A.A. Low rank methods of approximation in an electromagnetic problem / A.A Aparinov, A.V Setukha, S.L. Stavtsev // Lobachevskii J. Math. — 2019. — V. 40, № 11. — P. 1771–1780.
- 7. Amaratunga, K. Surface wavelets: a multiresolution signal processing tool for 3D computational modelling / K. Amaratunga, J.E. Castrillon-Candas // Int. J. Numer. Meth. Engng. — 2001. — V. 55, № 3. — P. 239–271.
- 8. Saad, Y. GMRES: a generalized minimal residual algorithm for solving nonsymmetric linear systems / Y. Saad, M.H. Schultz // SIAM J. Sci. Stat. Comput. — 1986. — V. 7, № 3. — P. 856–869.