- Код статьи
- 10.31857/S0374064124080047-1
- DOI
- 10.31857/S0374064124080047
- Тип публикации
- Статья
- Статус публикации
- Опубликовано
- Авторы
- Том/ Выпуск
- Том 60 / Номер выпуска 8
- Страницы
- 1049-1062
- Аннотация
- Исследованы вопросы существования и единственности решения задачи определения стационарной температуры на верхней границе полосы при известных условиях на нижней границе.
- Ключевые слова
- эллиптическое уравнение задача Коши аналитическая функция
- Дата публикации
- 19.09.2025
- Год выхода
- 2025
- Всего подписок
- 0
- Всего просмотров
- 5
Библиография
- 1. Тихонов, А.Н. Уравнения математической физики / А.Н. Тихонов, А.А. Самарский. — М. : Наука, 1966. — 724 с.
- 2. Hadamard, J., Lectures on Cauchy’s Problem in Linear Partial Differential Equations, New Haven: Yale University Press; London: Humphrey Milford; Oxford: University Press, 1923.
- 3. Alessandrini, G., Rondi, L., Rosset, E., and Vessella, S., The stability for the Cauchy problem for elliptic equations, arXiv:0907.2882v1[math.AP] 16 Jul 2009.
- 4. Лаврентьев, М.М. О задаче Коши для уравнения Лапласа / М.М. Лаврентьев. — Изв. АН СССР. Сер. математическая. — 1956. — Т. 20, № 6. — С. 819-842.
- 5. Мизохата, С. Теория уравнений с частными производными / С. Мизохата ; пер. с яп. Ю.В. Егорова ; под ред. О.А. Олейник. — М. : Мир, 1977. — 504 с.
- 6. Кальменов, Т.Ш. Критерий сильной разрешимости смешанной задачи Коши для уравнения Лапласа / Т.Ш. Кальменов, У.А. Искакова // Дифференц. уравнения. — 2009. — Т. 45, № 10. — С. 1460-1466.
- 7. Kabanikhin, S.I., Inverse and Ill-posed Problems: Theory and Applications, Berlin; Boston: Springer, 2010.
- 8. Tikhonov, A.N., Goncharsky, A.V., Stepanov, V.V., and Yagola, A.G., Numerical Methods for the Solution of Ill-Posed Problems, Kluwer Academic Publishers, 1995.
- 9. Alimov, Sh.A. and Qudaybergenov, A.K., Determination of temperature at the outer boundary of a body, J. Math. Sci., 2023, vol. 274, no. 2, pp. 159-171.
- 10. Ильин, В.А. Спектральная теория дифференциальных операторов. Самосопряженные дифференциальные операторы / В.А. Ильин. — М. : Наука, 1991. — 366 с.
- 11. Наймарк, М.А. Линейные дифференциальные операторы / М.А. Наймарк. — М. : Наука, 1969. — 528 с.
- 12. Садовничий, В.А. Теория операторов. 5-е изд. / В.А. Садовничий. — М. : Изд-во Моск. ун-та, 2004. — 384 с.