ОМНДифференциальные уравнения Differential Equations

  • ISSN (Print) 0374-0641
  • ISSN (Online) 3034-5030

ЗАДАЧА О ПАДЕНИИ ЛЕНТЫ ЛАЙНЕРА НА НАКЛОННУЮ ОПОРУ

Код статьи
10.31857/S0374064124070041-1
DOI
10.31857/S0374064124070041
Тип публикации
Статья
Статус публикации
Опубликовано
Авторы
Том/ Выпуск
Том 60 / Номер выпуска 7
Страницы
897-910
Аннотация
Рассмотрена задача численного моделирования контактного взаимодействия металлической пластины, движущейся со скоростью около 0.5 км/с, с закреплённой наклонной опорой за время порядка 100 мкс. Для описания пластины и опоры применена модель упругопластического тела для больш´их деформаций. Для учёта граничных условий на контактирующих поверхностях в расчётах использован итерационный алгоритм, относящийся к методам типа Неймана–Дирихле. Для пространственной дискретизации применён метод конечных элементов. Приведены результаты расчётов. Рассмотрены модельные одномерные задачи, позволяющие качественно оценить результаты расчётов, полученные в двумерном случае.
Ключевые слова
упругопластическое тело контактная задача метод конечных элементов
Дата публикации
19.09.2025
Год выхода
2025
Всего подписок
0
Всего просмотров
5

Библиография

  1. 1. Галанин, М.П. Математическое моделирование движения лайнера в различных сечениях магнитного компрессора / М.П. Галанин, А.П. Лотоцкий, А.С. Родин // Мат. моделирование. — 2010. — Т. 22, № 10. — С. 35–55.
  2. 2. Galanin, M.P., Lotoskii, A.P., and Rodin, A.S., Motion of liner in various sections of magnetic compressor, Math. Models and Comp. Simul., 2011, vol. 3, no. 3, pp. 273–289.
  3. 3. Коробейников, С.Н. Нелинейное деформирование твёрдых тел / С.Н. Коробейников. — Новосибирск : Изд-во СО РАН, 2000. — 262 c.
  4. 4. Korobeinikov, S.N., Nelineynoye deformirovaniye tverdykh tel (Nonlinear Deformation of Solids), Novosibirsk: Izdatelstvo SO RAN, 2000.
  5. 5. Wriggers, P. Computational Contact Mechanics / P. Wriggers. — Berlin-Heidelberg : Springer-Verlag, 2006. — 518 p.
  6. 6. Wriggers, P., Computational Contact Mechanics, Berlin–Heidelberg: Springer-Verlag, 2006.
  7. 7. Toselli, A. Domain Decomposition Methods — Algorithms and Theory / A. Toselli, O. Widlund. — Berlin-Heidelberg : Springer-Verlag, 2005. — 450 p.
  8. 8. Toselli, A. and Widlund, O., Domain Decomposition Methods — Algorithms and Theory, Berlin–Heidelberg: Springer-Verlag, 2005.
  9. 9. Галанин, М.П. Исследование и применение метода декомпозиции области для моделирования тепловыделяющего элемента / М.П. Галанин, А.С. Родин // Журн. вычислит. математики и мат. физики. — 2022. — Т. 62, № 4. — С. 659–676.
  10. 10. Galanin, M.P. and Rodin, A.S., Investigation and application of the domain decomposition method for simulating fuel elements, Comput. Math. Math. Phys., 2022, vol. 62, no. 4, pp. 641–657.
  11. 11. Bayada, G. Convergence of a Neumann–Dirichlet algorithm for two-body contact problems with non local Coulomb’s friction law / G. Bayada, J. Sabil, T. Sassi // Math. Model. Numer. Anal. — 2008. — V. 42. — P. 243–262.
  12. 12. Bayada, G., Sabil, J., and Sassi, T., Convergence of a Neumann–Dirichlet algorithm for two-body contact problems with non local Coulomb’s friction law, Math. Model. Numer. Anal., 2008, vol. 42, pp. 243–262.
  13. 13. Тихонов, А.Н. Уравнения математической физики / А.Н. Тихонов, А.А. Самарский. — М. : Наука, 1972. — 736 c.
  14. 14. Tichonov, A.N. and Samarskii, A.A., Uravneniya matematicheskoy fiziki (Equations of Mathematical Physics), Moscow: Nauka, 1972.
  15. 15. Агошков, В.И. Уравнения математической физики / В.И. Агошков, П.Б. Дубовский, В.П. Шутяев. — М. : Физматлит, 2002. — 320 c.
  16. 16. Agoshkov, V.I., Dubovskii, P.B., and Shutiaev, V.P., Metody resheniya zadach matematicheskoy fiziki (Methods for Solving Problems of Mathematical Physics), Moscow: Fizmatlit, 2002.
  17. 17. Галанин, М.П. Математическое моделирование: теория и применение / М.П. Галанин, Н.А. Тихонов, М.Г. Токмачев. — М. : Ленанд, 2022. — 598 c.
  18. 18. Galanin, M.P., Tichonov, N.A., and Tokmachev, M.G., Matematicheskoye modelirovaniye: teoriya i primeneniye (Mathematical Modeling: Theory and Application), Moscow: Lenand, 2022.
  19. 19. Партон, В.З. Методы математической теории упругости / В.З. Партон, П.И. Перлин. — М. : Наука, 1981. — 688 c.
  20. 20. Parton, V.Z. and Perlin, P.I., Mathematical Methods of the Theory of Elasticity, Moscow: MIR, 1984.
  21. 21. Будак, Б.М. Сборник задач по математической физике / Б.М. Будак, А.А. Самарский, А.Н. Тихонов. — М. : Наука, 1988. — 686 c.
  22. 22. Budak, B.M., Samarskii, A.A., and Tichonov, A.N., Sbornik zadach po matematicheskoy fizike (Collection of Problems in Mathematical Physics), Moscow: Nauka, 1988.
  23. 23. Седов, Л.И. Механика сплошной среды. В 2-х т. / Л.И. Седов. — М. : Наука, 1994. — Т. 2. — 568 c.
  24. 24. Sedov, L.I., Mekhanika sploshnoy sredy (Continuum Mechanics), vol. 2, Moscow: Nauka, 1994.
  25. 25. Дьяконов, В.П. Mathematica 5/6/7. Полное руководство / В.П. Дьяконов. — М. : ДМК Пресс, 2010. — 624 c.
  26. 26. Diakonov, V.P., Mathematica 5/6/7. Polnoye rukovodstvo (Mathematica 5/6/7. Complete Guide), Moscow: DMK Press, 2010.
QR
Перевести

Индексирование

Scopus

Scopus

Scopus

Crossref

Scopus

Высшая аттестационная комиссия

При Министерстве образования и науки Российской Федерации

Scopus

Научная электронная библиотека