RAS MathematicsДифференциальные уравнения Differential Equations

  • ISSN (Print) 0374-0641
  • ISSN (Online) 3034-5030

SPLITTING SCHEMES FOR EVOLUTION EQUATIONS WITH FACTORIZED OPERATOR

PII
10.31857/S0374064124070024-1
DOI
10.31857/S0374064124070024
Publication type
Article
Status
Published
Authors
Volume/ Edition
Volume 60 / Issue number 7
Pages
876-885
Abstract
In the approximate solution of the Cauchy problem for evolution equations, the problem operator can often be represented as a sum of simpler operators. This makes it possible to construct operatordifference splitting schemes, when the transition to a new level in time is provided by solving problems for separate operator summands. We consider nonstationary problems, the main feature of which is related to the representation of the problem operator as a product of the operator
Keywords
эволюционное уравнение факторизованный оператор трёхслойная схема устойчивость
Date of publication
19.09.2025
Year of publication
2025
Number of purchasers
0
Views
8

References

  1. 1. Dautray, K. Mathematical Analysis and Numerical Methods for Science and Technology. Vol. 1. Physical Origins and Classical Methods / К. Dautray, J.-L Lions. — Berlin : Springer, 2000. — 722 p.
  2. 2. Dautray, K. and Lions, J.-L., Mathematical Analysis and Numerical Methods for Science and Technology. Vol. 1. Physical Origins and Classical Methods, Berlin: Springer, 2000.
  3. 3. Fung, Y.C. Classical and Computational Solid Mechanics / Y.C. Fung, P. Tong, X. Chen. — New Jersey : World Scientific Publishing Company, 2017. — 860 p.
  4. 4. Fung, Y.C., Tong, P., and Chen, X., Classical and Computational Solid Mechanics, New Jersey: World Scientific Publishing Company, 2017.
  5. 5. Samarskii, A.A. The Theory of Difference Schemes / A.A Samarskii. — New York : Marcel Dekker, 2001. — 786 p.
  6. 6. Samarskii, A.A., The Theory of Difference Schemes, New York: Marcel Dekker, 2001.
  7. 7. LeVeque, R.J. Finite Difference Methods for Ordinary and Partial Differential Equations: Steady-State and Time-Dependent Problems / R.J. LeVeque. — Philadelphia : SIAM, 2007. — 328 p.
  8. 8. LeVeque, R.J., Finite Difference Methods for Ordinary and Partial Differential Equations: Steady-State and Time-Dependent Problems, Philadelphia: SIAM, 2007.
  9. 9. Самарский, А.А. Устойчивость разностных схем / А.А. Самарский, А.В. Гулин. — М. : Наука, 1973. — 415 с.
  10. 10. Samarskii, A.A. and Gulin, A.V., Ustojchivost’ raznostnyh skhem (Stability of Difference Schemes), Moscow: Nauka, 1973.
  11. 11. Samarskii, А.А. Difference Schemes with Operator Factors / A.A Samarskii, P.P. Matus, P.N. Vabishchevich. — Dordrecht : Kluwer Academic Publishers, 2002. — 384 p.
  12. 12. Samarskii, A.A., Matus, P.P., and Vabishchevich, P.N., Difference Schemes with Operator Factors, Dordrecht: Kluwer Academic Publishers, 2002.
  13. 13. Ascher, U.M. Implicit-explicit methods for time-dependent partial differential equations / U.M. Ascher, S.J. Ruuth, B.T.R. Wetton // SIAM J. Numer. Anal. — 1995. — V. 32, № 3. — P. 797–823.
  14. 14. Ascher, U.M., Ruuth, S.J., and Wetton, B.T.R., Implicit-explicit methods for time-dependent partial differential equations, SIAM J. Numer. Anal., 1995, vol. 32, no. 3, pp. 797–823.
  15. 15. Hundsdorfer, W.H. Numerical Solution of Time-Dependent Advection–Diffusion–Reaction Tquations / W.H. Hundsdorfer, J.G. Verwer. — Berlin : Springer, 2003. — 471 p.
  16. 16. Hundsdorfer, W.H. and Verwer, J.G., Numerical Solution of Time-Dependent Advection–Diffusion–Reaction Equations, Berlin: Springer, 2003.
  17. 17. Marchuk, G.I. Splitting and alternating direction methods / G.I. Marchuk // Handbook of Numerical Analysis / Eds. P.G. Ciarlet and J.L. Lions. — North-Holland, 1990. — Vol. I. — P. 197–462.
  18. 18. Marchuk, G.I., Splitting and alternating direction methods, Handbook of Numerical Analysis, Eds. P.G. Ciarlet and J.L. Lions, 1990, vol. I, pp. 197–462.
  19. 19. Vabishchevich, P.N. Additive Operator-Difference Schemes: Splitting Schemes / P.N. Vabishchevich. — Berlin : De Gruyter, 2013. — 354 p.
  20. 20. Vabishchevich, P.N., Additive Operator-Difference Schemes: Splitting Schemes, Berlin: De Gruyter, 2013.
  21. 21. Vabishchevich P.N. Operator-difference scheme with a factorized operator / P.N. Vabishchevich // Large-Scale Scientific Computing 10th Int. Conf. — Sozopol, Bulgaria, June 8–12, 2015. — P. 72–79.
  22. 22. Vabishchevich, P.N., Operator-difference scheme with a factorized operator, Large-Scale Scientific Computing 10th Int. Conf., Sozopol, Bulgaria, June 8–12, 2015, pp. 72–79.
  23. 23. Vabishchevich P.N. Splitting schemes for some second-order evolutionary equations / P.N. Vabishchevich // Int. J. Numer. Anal. Model. — 2022. — V. 19, № 1. — P. 19–32.
  24. 24. Vabishchevich P.N., Splitting schemes for some second-order evolutionary equations, Int. J. Numer. Anal. Model., 2022, vol. 19, no. 1, pp. 19–32.
QR
Translate

Indexing

Scopus

Scopus

Scopus

Crossref

Scopus

Higher Attestation Commission

At the Ministry of Education and Science of the Russian Federation

Scopus

Scientific Electronic Library