RAS MathematicsДифференциальные уравнения Differential Equations

  • ISSN (Print) 0374-0641
  • ISSN (Online) 3034-5030

DISTRIBUTION OF SPECTRUM OF STURM–LIOUVILLE OPERATOR PERTURBED BY DELTA INTERACTION

PII
10.31857/S0374064124070019-1
DOI
10.31857/S0374064124070019
Publication type
Article
Status
Published
Authors
Volume/ Edition
Volume 60 / Issue number 7
Pages
867-875
Abstract
We consider singular Sturm–Liouville operator, perturbed by Dirac delta function. The smooth potention grows at infinity and ensures the discreteness of the spectrum of the unperturbed operator. We study the distribution of the perturbed operator and establish asymptotic behavior of the eigenvalues depending on the parameters of the perturbation.
Keywords
самосопряжённый оператор дискретный спектр собственное значение асимптотика
Date of publication
19.09.2025
Year of publication
2025
Number of purchasers
0
Views
8

References

  1. 1. Титчмарш, Э.Ч. Разложения по собственным функциям, связанные с дифференциальными уравнениями второго порядка / Э.Ч. Титчмарш ; пер. с англ. В.Б. Лидского ; под ред. Б.М. Левитана. — М. : ИЛ, 1960. — Т. 1. — 278 с.
  2. 2. Titchmarsh, E.C., Eigenfunction Expansions Associated with Second-order Differential Eguations, Oxford: Clarendon Press, 1946, vol. 1.
  3. 3. Савчюк, А.М. Операторы Штурма–Лиувилля с сингулярными потенциалами / А.М. Савчук, А.А. Шкаликов // Мат. заметки. — 1999. — Т. 1. — С. 897–912.
  4. 4. Savchuk, A.M. and Shkalikov, A.A., Sturm–Liouville operators with singular potentials, Math. Notes, 1999, vol. 66, no. 6, pp. 741–753.
  5. 5. Савчюк, А.М. Операторы Штурма–Лиувилля с потенциалами-распределениями / А.М. Савчук, А.А. Шкаликов // Тр. Моск. мат. об-ва. — 2003. — Т. 64. — С. 159–212.
  6. 6. Savchuk, A.M. and Shkalikov, A.A., Sturm–Liouville operators with distribution potentials, Trans. Moscow Math. Soc., 2003, vol. 64, pp. 143–192.
  7. 7. Albeverio, S. Spectral theory of semibounded Sturm–Liouville operators with local interactions on a discrete set / S. Albeverio, A. Kostenko, M. Malamud // J. Math. Phys. — 2010. — V. 51, — Art. 102102.
  8. 8. Albeverio, S., Kostenko, A., Malamud, M. Spectral theory of semibounded Sturm–Liouville operators with local interaction on a discrete set, J. Math. Phys., 2010, vol. 51, art. 102102.
  9. 9. Аленицын, А.Г. Асимптотика спектра оператора Штурма–Лиувилля в случае предельного круга / А.Г. Аленицын // Дифференц. уравнения. — 1976. — Т. 12, № 3. — С. 428–437.
  10. 10. Alenizin, A.G., Asimptotika spektra operatora Sturma–Liouville v sluchae predelnogo kruga (Asymptotic behavior of the spectrum of a Sturm–Liouville operator in the case of a limit circle), Differ. Uravn., 1976, vol. 12, no. 3, pp. 428–437.
  11. 11. Муртазин, Х.Х. Асимптотика спектра оператора Штурма–Лиувилля / Х.Х. Муртазин, Т.Г. Амангильдин // Мат. сб. — 1979. — Т. 110 (151), № 1 (9). — С. 135–139.
  12. 12. Murtazin, Kh.Kh. and Amangil’din T.G., The asymptotic expansion of the spectrum of a Sturm–Liouville operator, Math. USSR-Sb., 1981, vol. 38, no. 1, pp. 127–141.
  13. 13. Олвер, Ф. Асимптотика и специальные функции / Ф. Олвер ; пер. с англ. Ю.А. Брычкова ; под ред. А.П. Прудникова. — М. : Наука, 1990. — 528 с.
  14. 14. Olver, F.W.J., Asymptotics and Special Functions, New York: Academic Press, 1974.
  15. 15. Giertz, M. On the solutions in
  16. 16. Giertz, M., On the solutions in
  17. 17. Титчмарш, Э.Ч. Разложение по собственным функциям, связанные с дифференциальными уравнениями второго порядка / Э.Ч. Титчмарш ; пер. с англ. В.Б. Лидского ; под ред. Б.М. Левитана. — М. : ИЛ, 1961. — Т. 2. — 550 с.
  18. 18. Titchmarsh, E.C., Eigenfunction Expansions Associated with Second-order Differential Eguations, Oxford: Clarendon Press, 1946, vol. 2.
  19. 19. Левитан, Б.М. Операторы Штурма–Лиувилля и Дирака / Б.М. Левитан, И.С. Саргсян. — М. : Наука, 1988. — 512 с.
  20. 20. Levitan, B.M and Sargsyan, I.S., Sturm–Liouville and Dirac Operators, Dordrecht: Kluwer, 1991.
  21. 21. Печенцов, А.С. Распределение спектра одного сингулярного положительного оператора Штурма–Лиувилля, возмущённого
  22. 22. Pechentsov, A.S., Distribution of the spectrum of a singular positive Sturm–Liouville operator perturbed by the Dirac delta function, Differ. Equat., 2017, vol. 53, no. 8, pp. 1029–1034.
  23. 23. Печенцов, А.С. Распределение спектра одного сингулярного оператора Штурма–Лиувилля, возмущённого
  24. 24. Pechentsov, A.S. and Popov, A.Yu., Distribution of the spectrum of a singular Sturm–Liouville operator perturbed by the Dirac delta function, Differ. Equat., 2019, vol. 55, no. 2, pp. 169–180.
  25. 25. Печенцов, А.С. Распределение спектра оператора Вебера, возмущённого
  26. 26. Pechentsov, A.S., Spectral distribution of the Weber operator perturbed by the Dirac delta function, Differ. Equat., 2021, vol. 57, no. 8, pp. 1003–1009.
QR
Translate

Indexing

Scopus

Scopus

Scopus

Crossref

Scopus

Higher Attestation Commission

At the Ministry of Education and Science of the Russian Federation

Scopus

Scientific Electronic Library