- PII
- 10.31857/S0374064124050114-1
- DOI
- 10.31857/S0374064124050114
- Publication type
- Article
- Status
- Published
- Authors
- Volume/ Edition
- Volume 60 / Issue number 5
- Pages
- 714-720
- Abstract
- In the paper was investigated the a priori estimate and the existence of periodic solutions of a fixed period for a system of second-order ordinary differential equations with the main quasi-homogeneous non-linearity. It is proved that an a priori estimate of periodic solutions takes place if the corresponding unperturbed system does not have non-zero bounded solutions. Under the conditions of an a priori estimate, using methods for calculating the mapping degree of vector fields, a criterion for the existence of periodic solutions under any perturbation from a given class is formulated and proven. The results obtained differ from earlier results in that the set of zeros of the main non-linear part is not taken into account.
- Keywords
- квазиоднородная нелинейность возмущение периодическое решение априорная оценка вращение векторного поля
- Date of publication
- 19.09.2025
- Year of publication
- 2025
- Number of purchasers
- 0
- Views
- 4
References
- 1. Арнольд, В.И. Дополнительные главы теории обыкновенных дифференциальных уравнений / В.И. Арнольд. — М. : Наука, 1978. — 304 c.
- 2. Мухамадиев, Э. О разрешимости периодической задачи для системы обыкновенных дифференциальных уравнений с главной положительно однородной нелинейностью / Э. Мухамадиев, А.Н. Наимов // Дифференц. уравнения. — 2023. — Т. 59, № 2. — С. 280–282.
- 3. Мухамадиев, Э. О разрешимости периодической задачи для системы нелинейных обыкновенных дифференциальных уравнений второго порядка / Э. Мухамадиев, А.Н. Наимов // Дифференц. уравнения. — 2024. — Т. 60, № 3. — С. 312–321.
- 4. Красносельский, М.А. Геометрические методы нелинейного анализа / М.А. Красносельский, П.П. Забрейко. — М. : Наука, 1975. — 512 c.