ОМНДифференциальные уравнения Differential Equations

  • ISSN (Print) 0374-0641
  • ISSN (Online) 3034-5030

ТИПИЧНЫЕ ПРОВАЛЬНЫЕ АСИМПТОТИКИ КВАЗИКЛАССИЧЕСКИХ ПРИБЛИЖЕНИЙ К РЕШЕНИЯМ НЕЛИНЕЙНОГО УРАВНЕНИЯ ШРЁДИНГЕРА

Код статьи
10.31857/S0374064124050048-1
DOI
10.31857/S0374064124050048
Тип публикации
Статья
Статус публикации
Опубликовано
Авторы
Том/ Выпуск
Том 60 / Номер выпуска 5
Страницы
618-631
Аннотация
Обоснованы формальные асимптотики, описывающие типичные провальные особенности сборки квазиклассических приближений к решениям двух вариантов интегрируемого нелинейного уравнения Шрёдингера −
Ключевые слова
нелинейное уравнение Шрёдингера уравнение газовой динамики урав нение мелкой воды асимптотика теория особенностей теория катастроф градиентная катастрофа провальная особенность сборка
Дата публикации
19.09.2025
Год выхода
2025
Всего подписок
0
Всего просмотров
2

Библиография

  1. 1. Ильин, А.М. Согласование асимптотических разложений решений краевых задач / А.М. Ильин. — М. : Наука, 1989. — 336 c.
  2. 2. Гуревич, А.В. Нелинейная теория распространения радиоволн в ионосфере / А.В. Гуревич, А.Б. Шварцбург. — М. : Наука, 1973. — 272 c.
  3. 3. Шварцбург, А.Б. Геометрическая оптика в нелинейной теории волн / А.Б. Шварцбург. — М. : Наука, 1976. — 119 c.
  4. 4. Жданов, С.Л. Квазигазовые неустойчивые среды / С.Л. Жданов, А.Б. Трубников. — М. : Наука, 1991. — 174 c.
  5. 5. Кудашев, В.Р. Особенности некоторых типичных процессов самопроизвольного падения интенсивности в неустойчивых средах / В.Р. Кудашев, Б.И. Сулейманов // Письма в журн. эксп. и теор. физики. — 1995. — Т. 65, № 4. — С. 358–363.
  6. 6. Кудашев, В.Р. Влияние малой диссипации на процессы зарождения одномерных ударных волн / В.Р. Кудашев, Б.И. Сулейманов // Прикл. математика и механика. — 2001. — Т. 3, № 3. — С. 456–466.
  7. 7. Гарифуллин, Р.Н. От слабых разрывов к бездиссипативным ударным волнам / Р.Н. Гарифуллин, Б.И. Сулейманов // Журн. эксп. и теор. физики. — 2010. — Т. 137, № 1. — С. 149–164.
  8. 8. Dubrovin, B. On universality of critical behaviour in the critical behaviour in the focusing nonlinear Schr¨odinger equation, elliptic umbilic catstrophe and the tritonque to the Painlev´e-I equation / B. Dubrovin, T. Grava, С. Klein // J. Nonlinear Sci. — 2009. — V. 19, № 1. — P. 57–94.
  9. 9. Konopelchenko, B.G. Quasi-classical approximation in vortex filament dynamics. Integrable systems, gradient catastrophe, and flutter / B.G. Konopelchenko, G. Ortenzi // Stud. Appl. Math. — 2013. — V. 130, № 2. — P. 167–199.
  10. 10. Konopelchenko, B.G. Jordan form, parabolicity and other features of change of type transition for hydrodynamic type systems / B.G. Konopelchenko, G. Ortenzi // J. Phys. A. — 2017. — V. 50, № 21. — Art. 215205.
  11. 11. Богаевский, И.А. Особенности многозначных решений квазилинейных гиперболических систем / И.А. Богаевский, Д.В. Туницкий // Тр. Мат. ин-та им. В.А. Стеклова. — 2020. — Т. 308. — С. 76–87.
  12. 12. Сулейманов, Б.И. Типичная провальная особенность сборки решений уравнений движения одномерного изоэнтропического газа / Б.И. Сулейманов, А.М. Шавлуков // Изв. РАН. Сер. физ. — 2020. — Т. 84, № 5. — С. 664–666.
  13. 13. Сулейманов, Б.И. О наследовании решениями уравнений движения изоэнтропического газа типичных особенностей решений линейного волнового уравнения / Б.И. Сулейманов, А.М. Шавлуков // Мат. заметки. — 2022. — Т. 112, № 4. — С. 625–640.
  14. 14. Рахимов, А.Х. Особенности римановых инвариантов / А.Х. Рахимов // Функц. анализ и его приложения. — 1993. — Т. 27, № 1. — С. 46–59.
  15. 15. Брёкер, Т. Дифференцируемые ростки и катастрофы / Т. Брёкер, Л. Ландер ; пер. с англ. А.Г. Кушниренко. — М. : Мир, 1977. — 208 c.
  16. 16. Постон, Т. Теория катастроф и ее приложения / Т. Постон, И. Стюарт ; пер. с англ. А.В. Чернавского. — М. : Мир, 1980. — 617 c.
  17. 17. Арнольд, В.И. Особенности дифференцируемых отображений. Т. 1. Классификация критических точек, каустик и волновых фронтов / В.И. Арнольд, А.Н. Варченко, С.М. Гусейн-Заде. — М. : Наука, 1982. — 304 c.
  18. 18. Гилмор, Р. Прикладная теория катастроф. Кн. 1 / Р. Гилмор ; пер. с англ. под ред. Ю.П. Гупало, А.А. Пионтковского. — М. : Мир, 1984. — 349 c.
  19. 19. Алексеев, Ю.К. Введение в теорию катастроф / Ю.К. Алексеев, В.П. Сухоруков; — М. : Изд-во Моск. ун-та, 2000. — 182 c.
  20. 20. Седых, В.Д. Математические методы теории катастроф / В.Д. Седых. — М. : МЦНМО, 2021. — 224 c.
  21. 21. Коробейник, Ю.Ф. Об аналитических решениях одного класса уравнений в частных производных / Ю.Ф. Коробейник// Докл. АН СССР. — 1961. — Т. 140, № 6. — С. 1248–1251.
  22. 22. Янушаускас, А.И. Структурные свойства решений некоторых аналитических уравнений с частными производными / А.И. Янушаускас // Дифференц. уравнения. — 1981. — Т. 17, № 1. — С. 182–194.
  23. 23. Янушаускас, А.И. Аналитические и гармонические функции многих переменных / А.И. Янушаускас. — Новосибирск : Наука, 1981. — 183 c.
QR
Перевести

Индексирование

Scopus

Scopus

Scopus

Crossref

Scopus

Высшая аттестационная комиссия

При Министерстве образования и науки Российской Федерации

Scopus

Научная электронная библиотека