- Код статьи
- 10.31857/S0374064124010055-1
- DOI
- 10.31857/S0374064124010055
- Тип публикации
- Статья
- Статус публикации
- Опубликовано
- Авторы
- Том/ Выпуск
- Том 60 / Номер выпуска 1
- Страницы
- 55-63
- Аннотация
- Рассматриваются симметрии уравнений с частными производными на основе использования дифференциально-геометрических и алгебраических методов теории динамических систем с управлением.
- Ключевые слова
- уравнение с частными производными дифференциальная система динамическая система с управлением первый интеграл симметрия декомпозиция
- Дата публикации
- 18.09.2025
- Год выхода
- 2025
- Всего подписок
- 0
- Всего просмотров
- 3
Библиография
- 1. Елкин В.И. Применение дифференциально-геометрических методов теории управления в теории дифференциальных уравнений с частными производными. I. // Дифференц. уравнения. 2021. Т. 57. № 11. С. 1474–1482.
- 2. Елкин В.И. Применение дифференциально-геометрических методов теории управления в теории дифференциальных уравнений с частными производными. II. // Дифференц. уравнения. 2022. Т. 57. № 11. С. 1453–1460.
- 3. Овсянников Л.В. Групповой анализ дифференциальных уравнений. М., 1978.
- 4. Павловский Ю.Н. Групповые свойства управляемых систем и фазовые организационные структуры. I. Группы, характеризующие динамические системы // Журн. вычислит. математики и мат. физики. 1974. Т. 14. № 4. С. 862–872.
- 5. Павловский Ю.Н. Групповые свойства управляемых систем и фазовые организационные структуры. II. Фазовые организационные структуры // Журн. вычислит. математики и мат. физики. 1974. Т. 14. № 5. С. 1093–1103.
- 6. Эйзенхарт Л.П. Непрерывные группы преобразований. М., 1947.