- PII
- 10.31857/S0374064124010038-1
- DOI
- 10.31857/S0374064124010038
- Publication type
- Article
- Status
- Published
- Authors
- Volume/ Edition
- Volume 60 / Issue number 1
- Pages
- 24-40
- Abstract
- Предложены новые подходы в задаче конструирования для многомерных нелинейных систем теории управления эквивалентных скалярных дифференциальных уравнений, а также в задаче конструирования для нелинейных уравнений Лурье (скалярных дифференциальных уравнений, содержащих производные только чётных порядков) эквивалентных гамильтоновых систем. Изучены условия разрешимости соответствующих задач, предложены новые формулы перехода к эквивалентным уравнениям и системам. Для уравнений Лурье предлагаемые подходы основаны на переходе от линейной части к нормальным формам соответствующих гамильтоновых систем с последующим преобразованием найденной системы. Получены расчётные формулы и алгоритмы, эффективность которых иллюстрируется примерами.
- Keywords
- Date of publication
- 19.09.2025
- Year of publication
- 2025
- Number of purchasers
- 0
- Views
- 11
References
- 1. Воронов А.А. Введение в динамику сложных управляемых систем. М., 1985.
- 2. Заде Л., Дезоер Ч. Теория линейных систем. Метод пространства состояний. М., 1970.
- 3. Поляк Б.Т., Хлебников М.В., Рапопорт Л.Б. Математическая теория автоматического управления. М., 2019.
- 4. Егоров А.И. Обыкновенные дифференциальные уравнения с приложениями. М., 2005.
- 5. Красносельский М.А., Лифшиц Е.А., Соболев А.В. Позитивные линейные системы: метод положительных операторов. М., 1985.
- 6. Meyer K., Hall G., Offin D. Introduction to Hamiltonian Dynamical Systems and the N-Body Problem. New York, 2009.
- 7. Журавлев В.Ф., Петров Ф.Г., Шундерюк М.М. Избранные задачи гамильтоновой механики. М.,2015.
- 8. Красносельский А.М., Рачинский Д.И. О гамильтоновости систем Лурье // Автоматика и телемеханика. 2000. № 8. С. 25–29.
- 9. Юмагулов М.Г., Ибрагимова Л.С., Белова А.С. Исследование задачи о параметрическом резонансе в системах Лурье со слабоосциллирующими коэффициентами // Автоматика и телемеханика. 2022.№ 2. С. 107–121.
- 10. Юмагулов М.Г., Беликова О.Н., Исанбаева Н.Р. Бифуркации в окрестностях границ областей устойчивости точек либрации задачи трех тел // Астрономический журн. 2018. Т. 95. № 2. С. 158–168.
- 11. Ван Д., Ли Ч., Чоу Ш.-Н. Нормальные формы и бифуркации векторных полей на плоскости. М., 2005.
- 12. Брюно А.Д. Нормальные формы систем Гамильтона с периодическим возмущением. М., 2019 (Препринт / Институт прикладной математики имени М.В. Келдыша; № 56).
- 13. Юмагулов М.Г., Ибрагимова Л.С., Белова А.С. Методы теории возмущений в задаче о параметрическом резонансе для линейных периодических гамильтоновых систем // Уфимский мат. журн. 2021. Т. 13. № 3. С. 178–195.