RAS MathematicsДифференциальные уравнения Differential Equations

  • ISSN (Print) 0374-0641
  • ISSN (Online) 3034-5030

On the Existence of Feedback Control for One Fractional Voigt Model

PII
10.31857/S0374064123120117-1
DOI
10.31857/S0374064123120117
Publication type
Article
Status
Published
Authors
Volume/ Edition
Volume 59 / Issue number 12
Pages
1710-1714
Abstract
We study the feedback control problem for a mathematical model that describes the motion of a viscoelastic fluid with memory along the trajectories of the velocity field. We prove the existence of an optimal control that delivers a minimum to a given bounded and lower semicontinuous cost functional.
Keywords
Date of publication
18.09.2025
Year of publication
2025
Number of purchasers
0
Views
8

References

  1. 1. Самко С.Г., Килбас А.А., Маричев О.И. Интегралы и производные дробного порядка и некоторые их приложения. Минск, 1987.
  2. 2. Zvyagin V., Orlov V. Weak solvability of fractional Voigt model of viscoelasticity // Discrete and Continuous Dynamical Systems. 2018. V. 38. № 12. P. 6327-6350.
  3. 3. Звягин А.В. О слабой разрешимости и сходимости решений дробной альфа-модели Фойгта движения вязкоупругой среды // Успехи мат. наук. 2019. Т. 74. № 3. С. 189-190.
  4. 4. Звягин В.Г., Орлов В.П. О регулярности слабых решений обобщённой модели вязкоупругости Фойгта // Журн. вычислит. математики и мат. физики. 2020. Т. 60. № 11. С. 1933-1949.
  5. 5. Звягин А.В. Исследование слабой разрешимости дробной альфа-модели Фойгта // Изв. РАН. Сер. мат. 2021. Т. 85. № 1. С. 66-97.
  6. 6. Zvyagin V., Orlov V. Weak solvability of one viscoelastic fractional dynamics model of continuum with memory // J. of Math. Fluid Mech. 2021. V. 23. Art. 9.
  7. 7. Zvyagin V.G., Kostenko E.I. Investigation of the weak solvability of one fractional model with infinite memory // Lobachevskii J. of Math. 2023. V. 44. № 3. P. 969-988.
  8. 8. DiPerna R.J., Lions P.L. Ordinary differential equations, transport theory and Sobolev spaces // Inventiones Mathematicae. 1989. V. 98. № 3. P. 511-547.
  9. 9. Crippa G. The ordinary differential equation with non-Lipschitz vector fields // Bollettino dell'Unione Matematica Italiana. 2008. V. 1. № 2. P. 333-348.
  10. 10. Crippa G., de Lellis C. Estimates and regularity results for the diPerna-Lions flow // J. fur die reine und angewandte Mathematik. 2008. V. 616. P. 15-46.
  11. 11. Фурсиков А.В. Оптимальное управление распределёнными системами. Теория и приложения. Новосибирск, 1999.
  12. 12. Звягин А.В. Задача оптимального управления для стационарной модели слабо концентрированных водных растворов полимеров // Дифференц. уравнения. 2013. Т. 49. № 2. С. 245-249.
  13. 13. Zvyagin V., Zvyagin A., Ustiuzhaninova A. Optimal feedback control problem for the fractional Voigt $\alpha $-model // Math. 2020. V. 8. № 7. Art. 1197.
  14. 14. Звягин В.Г., Звягин А.В., Хонг Н.М. Об оптимальном управлении с обратной связью для модели движения нелинейно-вязкой жидкости // Дифференц. уравнения. 2021. Т. 57. № 1. С. 135-139.
  15. 15. Звягин В.Г. Аппроксимационно-топологический подход к исследованию математических задач гидродинамики // Соврем. математика. Фунд. направления. 2012. Т. 46. С. 92-119.
  16. 16. Звягин В.Г., Турбин М.В. Математические вопросы гидродинамики вязкоупругих сред. М., 2012.
QR
Translate

Indexing

Scopus

Scopus

Scopus

Crossref

Scopus

Higher Attestation Commission

At the Ministry of Education and Science of the Russian Federation

Scopus

Scientific Electronic Library