RAS MathematicsДифференциальные уравнения Differential Equations

  • ISSN (Print) 0374-0641
  • ISSN (Online) 3034-5030

Existence of Sub-Lorentzian Longest Curves

PII
10.31857/S0374064123120105-1
DOI
10.31857/S0374064123120105
Publication type
Article
Status
Published
Authors
Volume/ Edition
Volume 59 / Issue number 12
Pages
1702-1709
Abstract
Sufficient conditions for the existence of optimal trajectories in general optimal control problems with free terminal time as well as in sub-Lorentzian problems are obtained.
Keywords
Date of publication
19.09.2025
Year of publication
2025
Number of purchasers
0
Views
12

References

  1. 1. Wald R.M. General Relativity. Chicago, 1984.
  2. 2. Beem J.K., Ehrlich P.E., Easley K.L. Global Lorentzian Geometry. Monographs Textbooks Pure Appl. Math. V. 202. New York; Basel; Hong Kong, 1996.
  3. 3. M"uller O., S\'anchez M. An Invitation to Lorentzian Geometry // Jahresber. Deutsch. Math. Ver. 2014. V. 115. P. 153-183.
  4. 4. Montgomery R. A Tour of Subriemannnian Geometries, their Geodesics and Applications. Providence, 2002.
  5. 5. Agrachev A., Barilari D., Boscain U. A Comprehensive Introduction to sub-Riemannian Geometry from Hamiltonian Viewpoint. Cambridge, 2019.
  6. 6. Grochowski M. Reachable sets for the Heisenberg sub-Lorentzian structure on $\mathbb{R}^3.$ An estimate for the distance function // J. of Dynamical and Control Systems. 2006. V. 12. № 2. P. 145-160.
  7. 7. Grochowski M. Geodesics in the sub-Lorentzian geometry // Bull. Polish. Acad. Sci. Math. 2002. V. 50. P. 161-178.
  8. 8. Grochowski M. Normal forms of germs of contact sub-Lorentzian structures on $\mathbb{R}^3.$ Differentiability of the sub-Lorentzian distance // J. Dynam. Control Systems. 2003. V. 9. № 4. P. 531-547.
  9. 9. Grochowski M. Properties of reachable sets in the sub-Lorentzian geometry // J. Geom. Phys. 2009. V. 59. № 7. P. 885-900.
  10. 10. Grochowski M. Reachable sets for contact sub-Lorentzian metrics on $\mathbb{R}^3.$ Application to control affine systems with the scalar input // J. Math. Sci. 2011. V. 177. № 3. P. 383-394.
  11. 11. Grochowski M. On the Heisenberg sub-Lorentzian metric on $\mathbb{R}^3$ // Geometric Singularity Theory. Banach Center Publications. Warszawa, 2004. V. 65. P. 57-65.
  12. 12. Chang D.-C., Markina I., Vasil'ev A. Sub-Lorentzian geometry on anti-de Sitter space // J. Math. Pures Appl. 2008. V. 90. P. 82-110.
  13. 13. Korolko A., Markina I. Nonholonomic Lorentzian geometry on some H-type groups // J. Geom. Anal. 2009. V. 19. P. 864-889.
  14. 14. Grong E., Vasil'ev A. Sub-Riemannian and sub-Lorentzian geometry on $SU(1, 1)$ and on its universal cover // J. Geom. Mech. 2011. V. 3. № 2. P. 225-260.
  15. 15. Grochowski M., Medvedev A., Warhurst B. 3-dimensional left-invariant sub-Lorentzian contact structures // Differ. Geometry and its Appl. 2016. V. 49. P. 142-166.
  16. 16. Jurdjevic V. Geometric Control Theory. Cambridge, 1997.
  17. 17. Аграчев А.А., Сачков Ю.Л. Геометрическая теория управления. M., 2005.
  18. 18. Сачков Ю.Л. Введение в геометрическую теорию управления. М., 2021.
  19. 19. Сачков Ю.Л. Лоренцева геометрия на плоскости Лобачевского // Мат. заметки. 2023. V. 114. № 1. P. 127-130.
  20. 20. Bonnard B., Jurdjevic V., Kupka I., Sallet G. Transitivity of families of invariant vector fields on the semidirect products of Lie groups // Trans. Amer. Math. Soc. 1982. V. 271. № 2. P. 525-535.
QR
Translate

Indexing

Scopus

Scopus

Scopus

Crossref

Scopus

Higher Attestation Commission

At the Ministry of Education and Science of the Russian Federation

Scopus

Scientific Electronic Library