- PII
- 10.31857/S0374064123120087-1
- DOI
- 10.31857/S0374064123120087
- Publication type
- Article
- Status
- Published
- Authors
- Volume/ Edition
- Volume 59 / Issue number 12
- Pages
- 1680-1691
- Abstract
- We study the asymptotic behavior of the spectrum of an integral operator similar to an integral operator with a logarithmic kernel depending on the sum of arguments. By a simple change of variables, the corresponding equation is reduced to an integral equation of convolution type defined on a finite interval (as is well known, such equations in the general case cannot be solved by quadratures). Next, using the Fourier transform, the equation is reduced to a conjugation problem for analytic functions and then to an infinite system of linear algebraic equations, the isolation of the main terms in which allows deriving a relation that determines the spectrum of the original problem.
- Keywords
- Date of publication
- 18.09.2025
- Year of publication
- 2025
- Number of purchasers
- 0
- Views
- 8
References
- 1. Oseledets I. The integral operator with logarithmic kernel has only one positive eigenvalue // Linear Algebra and its Appl. 2008. V. 428. № 7. P. 1560-1564.
- 2. Ukai S. Asymptotic distribution of eigenvalues of the kernel in the Kirkwood-Riseman integral equation // J. of Math. Phys. 1971. V. 12. № 1. P. 83-92.
- 3. Пальцев Б.В. Уравнения свёртки на конечном интервале для одного класса символов, имеющих степенную асимптотику на бесконечности // Изв. АН СССР. Сер. мат. 1980. Т. 44. № 2. С. 322-394.
- 4. Пальцев Б.В. Асимптотика спектра интегральных операторов свёртки на конечном интервале с однородными полярными ядрами // Изв. РАН. Сер. мат. 2003. Т. 67. № 4. С. 67-154.
- 5. Сахнович Л.А. Уравнения с разностным ядром на конечном отрезке // Успехи мат. наук. 1980. Т. 35. № 4. С. 69-129.
- 6. Полосин А.А. О спектре и собственных функциях оператора свёртки на конечном интервале с образом ядра - характеристической функцией // Дифференц. уравнения. 2017. Т. 53. № 9. С. 1180-1194.
- 7. Полосин А.А. Об асимптотическом поведении собственных значений и собственных функций интегрального оператора свёртки с логарифмическим ядром, заданного на конечном отрезке // Дифференц. уравнения. 2022. Т. 58. № 9. С. 1251-1265.
- 8. Гахов Ф.Д., Черский Ю.И. Уравнения типа свертки. М., 1978.
- 9. Гахов Ф.Д. Краевые задачи. М., 1977.