RAS MathematicsДифференциальные уравнения Differential Equations

  • ISSN (Print) 0374-0641
  • ISSN (Online) 3034-5030

On the Solvability of Linear Differential Operators on Vector Bundles over a Manifold

PII
10.31857/S0374064123120063-1
DOI
10.31857/S0374064123120063
Publication type
Article
Status
Published
Authors
Volume/ Edition
Volume 59 / Issue number 12
Pages
1654-1667
Abstract
Necessary and sufficient condition is established for the closedness of the range or surjectivity of a differential operator acting on smooth sections of vector bundles. For connected noncompact manifolds it is shown that these conditions are derived from the regularity conditions and the unique continuation property of solutions. An application of these results to elliptic operators (more precisely, to operators with a surjective principal symbol) with analytic coefficients, to second-order elliptic operators on line bundles with a real leading part, and to the Hodge–Laplace–de Rham operator is given. It is shown that the top de Rham (respectively, Dolbeault) cohomology group on a connected noncompact smooth (respectively, complex-analytic) manifold vanishes. For elliptic operators, we prove that solvability in smooth sections implies solvability in generalized sections.
Keywords
Date of publication
19.09.2025
Year of publication
2025
Number of purchasers
0
Views
10

References

  1. 1. Sagraloff B. Normal solvability of linear partial differential operators in $C^\infty(\Omega)$ // Geometrical Approaches to Differential Equations. Lect. Not. in Math. 2006. V. 810. P. 290-305.
  2. 2. Хермандер Л. Анализ линейных дифференциальных операторов. М., 1986.
  3. 3. Duistermaat J.J., H"ormander L. Fourier integral operators. II // Acta Math. 1972. V. 128. № 3-4. P. 183-269.
  4. 4. H"ormander L. Propagation of singularities and semiglobal existence theorems for (pseudo)differential operators of principal type // Ann. of Math. 1978. V. 108 (3). № 2. P. 569-609.
  5. 5. Hounie J. A note on global solvability of vector fields // Proc. Amer. Math. Soc. 1985. V. 94. № 1. P. 61-64.
  6. 6. Rauch J., Wigner D. Global solvability of the Casimir operator // Ann. of Math. 1976. V. 103. № 2. P. 229-236.
  7. 7. Helgason S. Solvability of invariant differential operators on homogeneous manifolds // Centro Internaz. Mat. Estivo. 1975. P. 281-310.
  8. 8. Ara\'ujo G. Regularity and solvability of linear differential operators in Gevrey spaces // Math. Nachr. 2018. V. 291. № 5-6. P. 729-758.
  9. 9. Bunke U., Olbrich M. Gamma-cohomology and the Selberg zeta function // J. Reine Angew. Math. 1995. V. 467. P. 199-219.
  10. 10. Rinehart L. Elliptic operators on non-compact manifolds have closed range // https://arxiv.org/abs/ 2203.07534.
  11. 11. Kazdan J.L. Unique continuation in geometry // Comm. Pure Appl. Math. 1988. V. 41. № 5. P. 667-681.
  12. 12. Grosser M., Kunzinger M., Oberguggenberger M., Steinbauer R. Geometric Theory of Generalized Functions with Applications to General Relativity. Dordrecht, 2001.
  13. 13. Grubb G. Distributions and Operators. New York, 2009.
  14. 14. Шефер Х. Топологические векторные пространства. М., 1971.
  15. 15. Palais R.S. Seminar on the Atiyah-Singer Index Theorem. Princeton, 1965.
  16. 16. Уэллс Р. Дифференциальное исчисление на комплексных многообразиях. М., 1976.
  17. 17. Шубин М.А. Псевдодифференциальные операторы и спектральная теория. М., 2005.
  18. 18. Antoni\'c N., Burazin K. On certain properties of spaces of locally Sobolev functions // Proc. of the Conf. on Appl. Math. and Sci. Comp. Dordrecht, 2005. P. 109-120.
  19. 19. Aronszajn N. A unique continuation theorem for solutions of elliptic partial differential equations or inequalities of second order // J. Math. Pures. Appl. 1957. V. 36. № 9. P. 235-249.
  20. 20. Munkres J.R. Topology. Upper Saddle River, 2000.
  21. 21. Kriegl A., Michor P.W. The Convenient Setting of Global Analysis. Providence, 1997.
  22. 22. Petrowsky I.G. Sur l'analyticit\'e des solutions des syst\'emes d'\'equations diff\'erentielles // Rec. Math. N. S. 1939. V. 5. № 47. P. 3-70.
  23. 23. Форстер О. Римановы поверхности. М., 1980.
  24. 24. Smirnov M. On the rate of polynomial approximations of holomorphic functions on convex compact sets // Complex Anal. Oper. Theory. 2023. V. 17. Art. 129.
  25. 25. Lee J.M. Introduction to Smooth Manifolds. Graduate Texts in Math. V. 218. New York, 2013.
QR
Translate

Indexing

Scopus

Scopus

Scopus

Crossref

Scopus

Higher Attestation Commission

At the Ministry of Education and Science of the Russian Federation

Scopus

Scientific Electronic Library