ОМНДифференциальные уравнения Differential Equations

  • ISSN (Print) 0374-0641
  • ISSN (Online) 3034-5030

Об устойчивости периодических решений модельного уравнения Навье–Стокса в тонком слое

Код статьи
10.31857/S0374064123110110-1
DOI
10.31857/S0374064123110110
Тип публикации
Статья
Статус публикации
Опубликовано
Авторы
Том/ Выпуск
Том 59 / Номер выпуска 11
Страницы
1561-1565
Аннотация
Исследуется существование и устойчивость периодических решений модельного уравнения Навье--Стокса в тонком трёхмерном слое в зависимости от существования и устойчивости периодических решений одного специального предельного двумерного уравнения.
Ключевые слова
Дата публикации
18.09.2025
Год выхода
2025
Всего подписок
0
Всего просмотров
1

Библиография

  1. 1. Leray J. Etude de diverses equations integrales nonlineaires et de quelques problemes que pose l'hydrodynamique // J. Math. Pures Appl. 1933. V. 12. P. 1-82.
  2. 2. Ладыженская О.А. Математические вопросы динамики вязкой несжимаемой жидкости. М., 1970.
  3. 3. Юдович В.И. Метод линеаризации в гидродинамической теории устойчивости. Ростов, 1984.
  4. 4. Raugel G., Sell G. Navier-Stokes equations on thin 3FD domains. I: Global attractors and global regularity of solutions // J. Amer. Math. Soc. 1993. V. 6. P. 503-568.
  5. 5. Raugel G., Sell G. Equations de Navier-Stokes dans des domaines minces endimension trois: regularite globale // C. R. Acad. Sci. Paris. 1989. V. 309. P. 299-303.
  6. 6. Johnson R., Kamenskii M., Nistri P. On the existence of periodic solutions of the Navier-Stokes equations in thin domain using the topological degree // J. of Dynamics and Differ. Equat. 2000. V. 12. № 4. P. 681-712.
  7. 7. Foias C., Manley O., Rosa R., Temam R. Navier-Stokes Equations and Turbulence. Cambridge, 2009.
  8. 8. Звягин В.Г. Введение в топологические методы нелинейного анализа. Воронеж, 2014.
  9. 9. Левенштам В. Б. Обоснование метода усреднения для системы уравнений с оператором Навье-Стокса в главной части // Алгебра и анализ. 2014. Т. 26. № 1. С. 94-127.
  10. 10. Гурова И.Н. Одно утверждение типа принципа родственности и вторая теорема Н.Н. Боголюбова в принципе усреднения параболических уравнений // Качественные и приближённые методы исследования операторных уравнений. Ярославль, 1982. С. 47-58.
  11. 11. Красносельский М.А. Интегральные операторы в пространствах суммируемых функций. М., 1966.
  12. 12. Соболевский П.Е. О нестационарных уравнениях гидродинамики вязкой жидкости // Докл. АН СССР. 1959. Т. 128. № 1. С. 45-48.
QR
Перевести

Индексирование

Scopus

Scopus

Scopus

Crossref

Scopus

Высшая аттестационная комиссия

При Министерстве образования и науки Российской Федерации

Scopus

Научная электронная библиотека