ОМНДифференциальные уравнения Differential Equations

  • ISSN (Print) 0374-0641
  • ISSN (Online) 3034-5030

Оценки интегрально ограниченных решений линейных дифференциальных неравенств

Код статьи
10.31857/S0374064123090017-1
DOI
10.31857/S0374064123090017
Тип публикации
Статья
Статус публикации
Опубликовано
Авторы
Том/ Выпуск
Том 59 / Номер выпуска 9
Страницы
1157-1171
Аннотация
Изучаются интегрально ограниченные решения дифференциального уравнения $\mathscr{A}(x)=z,$ где $\mathscr{A}$ -- линейный дифференциальный оператор порядка $l,$ определённый на функциях $x\colon\mathbb{R}\to H$ $(\mathbb{R}=(-\infty,\infty),$ $H$ -- конечномерное евклидово пространство). Правая часть $z$ -- интегрально ограниченная функция на $\mathbb{R}$ со значениями в $H,$ удовлетворяющая неравенству $(\psi(t), z(t))\geq\delta|z(t)|,$ $t\in\mathbb{R},$ $\delta > 0.$ Приводятся условия на оператор $\mathscr{A}$ и функцию $\psi \colon\mathbb{R}\to H,$ гарантирующие для рассматриваемых решений $x$ обратное неравенство вида $\int_{\tau}^{\tau+1}|x^{(l)}(t)| dt\leq c\int_{\tau-1}^{\tau+2}|x(t)|dt,$ в котором постоянная $c$ не зависит от выбора действительного числа $\tau$ и функции $x.$
Ключевые слова
Дата публикации
19.09.2025
Год выхода
2025
Всего подписок
0
Всего просмотров
10

Библиография

  1. 1. Соболев С.Л. Некоторые применения функционального анализа в математической физике. М., 1988.
  2. 2. Гольдштейн В.М., Решетняк Ю.Г. Введение в теорию функций с обобщенными производными и квазиконформные отображения. М., 1983.
  3. 3. Красносельский М.А., Бурд В.Ш., Колесов Ю.С. Нелинейные почти периодические колебания. М., 1970.
  4. 4. Красносельский М.А., Лифшиц Е.А., Соболев А.В. Позитивные линейные системы. М., 1985.
  5. 5. Климов В.С. Внутренние оценки решений линейных дифференциальных неравенств // Дифференц. уравнения. 2020. Т. 56. № 8. С. 1034-1044.
  6. 6. Лионс Ж.Л., Мадженес Э. Неоднородные граничные задачи и их приложения. М., 1971.
  7. 7. Красносельский М.А., Рутицкий Я.Б. Выпуклые функции и пространства Орлича. М., 1958.
  8. 8. Вулих Б.З. Cпециальные вопросы геометрии конусов в нормированных пространствах. Калинин, 1978.
  9. 9. Половинкин Е.С., Балашов М.В. Элементы выпуклого и сильно выпуклого анализа. М., 2007.
  10. 10. Богачёв В.И., Смолянов О.Г. Действительный и функциональный анализ. М.; Ижевск, 2011.
  11. 11. Канторович Л.В., Акилов Г.П. Функциональный анализ. М., 1977.
  12. 12. Халанай А., Векслер Д. Качественная теория импульсных систем. М., 1971.
QR
Перевести

Индексирование

Scopus

Scopus

Scopus

Crossref

Scopus

Высшая аттестационная комиссия

При Министерстве образования и науки Российской Федерации

Scopus

Научная электронная библиотека