ОМНДифференциальные уравнения Differential Equations

  • ISSN (Print) 0374-0641
  • ISSN (Online) 3034-5030

О фредгольмовости и разрешимости системы интегральных уравнений в задаче сопряжения для уравнения Гельмгольца

Код статьи
10.31857/S0374064123080083-1
DOI
10.31857/S0374064123080083
Тип публикации
Статья
Статус публикации
Опубликовано
Авторы
Том/ Выпуск
Том 59 / Номер выпуска 8
Страницы
1089-1097
Аннотация
Рассматривается скалярная трёхмерная краевая задача дифракции волны для уравнения Гельмгольца с условиями сопряжения, предполагающими наличие бесконечно тонкого материала на границе сред. Доказываются теоремы единственности и существования решения. Исходная задача сводится к системе интегральных уравнений по поверхности раздела сред. Приводятся расчётные формулы для системы линейных алгебраических уравнений, полученные после применения метода коллокации, и численные результаты решения задачи, когда область является шаром с определёнными условиями сопряжения.
Ключевые слова
Дата публикации
19.09.2025
Год выхода
2025
Всего подписок
0
Всего просмотров
9

Библиография

  1. 1. Ладыженская О.А. Краевые задачи математической физики. М., 1973.
  2. 2. Санчес-Паленсия Э. Неоднородные среды и теория колебаний. М., 1984.
  3. 3. Nedelec J.-C. Acoustic and Electromagnetic Equations. Integral Representations for Harmonic Problems. New York, 2001.
  4. 4. Колтон Д., Кресс Р. Методы интегральных уравнений в теории рассеяния. М., 1987.
  5. 5. Лерер А.М. Численная оценка погрешности метода возмущения при решении задачи об отражении электромагнитной волны от нелинейного графенового слоя // Радиотехника и электроника. 2022. T. 67. № 9. С. 855-858.
  6. 6. Смирнов Ю.Г., Тихов С.В., Гусарова Е.В. О распространении электромагнитных волн в диэлектрическом слое, покрытом графеном // Изв. вузов. Поволжский регион. Физ.-мат. науки. 2022. № 3. С. 11-18.
  7. 7. Mikhailov S.A. Quantum theory of the third-order nonlinear electrodynamic effects of graphene // Phys. Rev. B. 2016. V. 93. № 8. Art. 085403.
  8. 8. Hanson G.W. Dyadic Green's functions and guided surface waves for a surface conductivity model of graphene // J. of Appl. Phys. 2008. V. 103. № 6. Art. 064302.
  9. 9. Ильинский А.С., Кравцов В.В., Свешников А.Г. Математические модели электродинамики и акустики. М., 1991.
  10. 10. Colton D., Kress R. Inverse Acoustic and Electromagnetic Scattering Theory. New York, 2013.
  11. 11. Vainikko G. Multidimensional Weakly Singular Integral Equation. Berlin; Heidelberg, 1993.
  12. 12. Вайникко Г.М., Карма О.О. О сходимости приближённых методов решения линейных и нелинейных операторных уравнений // Журн. вычислит. математики и мат. физики. 1974. Т. 14. № 4. С. 828-837.
QR
Перевести

Индексирование

Scopus

Scopus

Scopus

Crossref

Scopus

Высшая аттестационная комиссия

При Министерстве образования и науки Российской Федерации

Scopus

Научная электронная библиотека