RAS MathematicsДифференциальные уравнения Differential Equations

  • ISSN (Print) 0374-0641
  • ISSN (Online) 3034-5030

Solution of a Singularly Perturbed Mixed Problem on the Half-Line for a Parabolic Equation with a Strong Turning Point of the Limit Operator

PII
10.31857/S0374064123080034-1
DOI
10.31857/S0374064123080034
Publication type
Article
Status
Published
Authors
Volume/ Edition
Volume 59 / Issue number 8
Pages
1029-1045
Abstract
We study singularly perturbed problems in the presence of spectral singularities of the limit operator using S.A. Lomov’s regularization method. In particular, a regularized asymptotic solution is constructed for a singularly perturbed inhomogeneous mixed problem on the half-line for a parabolic equation with a strong turning point of the limit operator. Based on the idea of asymptotic integration of problems with unstable spectrum, it is shown how regularizing functions and additional regularizing operators should be introduced, the formalism of the regularization method for this type of singularity is described in detail, this algorithm is justified, and an asymptotic solution of any order in a small parameter is constructed.
Keywords
Date of publication
19.09.2025
Year of publication
2025
Number of purchasers
0
Views
9

References

  1. 1. Ломов С.А. Введение в общую теорию сингулярных возмущений. М., 1981.
  2. 2. Ломов С.А., Ломов И.С. Основы математической теории пограничного слоя. М., 2011.
  3. 3. Eliseev A.G., Lomov S.A. Asymptotic integration of singularly perturbed problems // London Math. Soc. Russ. Math. Surveys. 1988. V. 43. P. 1-63.
  4. 4. Yeliseev A., Ratnikova T., Shaposhnikova D. Regularized asymptotics of the solution of the singularly perturbed first boundary value problem on the semiaxis for a parabolic equation with a rational "simple" turning point // Mathematics. 2021. № 9. Art. 405.
  5. 5. Елисеев А.Г., Кириченко П.В. Сингулярно возмущённая задача Коши при наличии "слабой" точки поворота первого порядка у предельного оператора с кратным спектром // Дифференц. уравнения. 2022. Т. 58. № 6. С. 733-746.
  6. 6. Елисеев А.Г. Пример решения сингулярно возмущённой задачи Коши для параболического уравнения при наличии "сильной" точки поворота // Дифференц. уравнения и процессы управления. 2022. № 3. С. 46-59.
  7. 7. Арнольд В.И. О матрицах, зависящих от параметров // Успехи мат. наук. 1971. Т. 26. Вып. 2 (158). С. 101-114.
  8. 8. Mehler F.G. Ueber die Entwicklung einer Function von beliebig vielen Variablen nach Laplaceschen Functionen honerer Ordnung // J. fur die Reine und Angewandte Mathematik. 1866. S. 161-176.
QR
Translate

Indexing

Scopus

Scopus

Scopus

Crossref

Scopus

Higher Attestation Commission

At the Ministry of Education and Science of the Russian Federation

Scopus

Scientific Electronic Library