RAS MathematicsДифференциальные уравнения Differential Equations

  • ISSN (Print) 0374-0641
  • ISSN (Online) 3034-5030

Ob ogranichennykh traektoriyakh avtonomnoy sistemy s vydelennoy polozhitel'no odnorodnoy nelineynost'yu

PII
10.31857/S0374064123070130-1
DOI
10.31857/S0374064123070130
Publication type
Article
Status
Published
Authors
Volume/ Edition
Volume 59 / Issue number 7
Pages
1001-1004
Abstract
Bounded trajectories of an autonomous system with an isolated positively homogeneous nonlinearity that is the gradient of a smooth function are studied. We prove the existence of nonstationary bounded trajectories lying in connected components of the set of points where the positively homogeneous function is negative and nonzero stationary points in those connected components whose closure has nonzero Euler characteristic. The existence of nonstationary bounded trajectories is substantiated using the Waűewski method; and the existence of stationary points, using methods for calculating the winding number of finite-dimensional vector fields.
Keywords
Date of publication
19.09.2025
Year of publication
2025
Number of purchasers
0
Views
9

References

  1. 1. Мухамадиев Э. О построении правильной направляющей функции для системы дифференциальных уравнений // Докл. АН СССР. 1970. Т. 190. № 4. С. 777-779.
  2. 2. Мухамадиев Э., Наимов А.Н. Критерии существования периодических и ограниченных решений для трёхмерных систем дифференциальных уравнений // Тр. Ин-та математики и механики УрО РАН. 2021. Т. 27. № 1. С. 157-172.
  3. 3. Хартман Ф. Обыкновенные дифференциальные уравнения. М., 1970.
  4. 4. Красносельский М.А., Забрейко П.П. Геометрические методы нелинейного анализа. М., 1975.
  5. 5. Борисович Ю.Г., Близняков Н.М., Израилевич Я.А., Фоменко Т.Н. Введение в топологию. М., 2014.
  6. 6. Mukhamadiev E., Naimov A.N. On the homotopy classification of positively homogeneous functions of three variables // Iss. Anal. 2021. V. 10. № 2. P. 67-78.
  7. 7. Мухамадиев Э. Ограниченные решения и гомотопические инварианты систем нелинейных дифференциальных уравнений // Докл. РАН. 1996. Т. 351. № 5. С. 596-598.
  8. 8. Мухамадиев Э., Наимов А.Н. Об априорной оценке и существовании периодических решений для одного класса систем нелинейных обыкновенных дифференциальных уравнений // Изв. вузов. Математика. 2022. № 4. С. 37-48.
QR
Translate

Indexing

Scopus

Scopus

Scopus

Crossref

Scopus

Higher Attestation Commission

At the Ministry of Education and Science of the Russian Federation

Scopus

Scientific Electronic Library