- Код статьи
- 10.31857/S0374064123060055-1
- DOI
- 10.31857/S0374064123060055
- Тип публикации
- Статья
- Статус публикации
- Опубликовано
- Авторы
- Том/ Выпуск
- Том 59 / Номер выпуска 6
- Страницы
- 746-751
- Аннотация
- Рассматривается начально-краевая задача для сингулярно возмущённой системы уравнений в частных производных. Ставится обратная задача, состоящая в определении неизвестного начального условия по дополнительной информации о решении начально-краевой задачи. Доказывается, что на основе использования разложения решения начально-краевой задачи по малому параметру $\varepsilon $ можно получить приближённые решения, аппроксимирующие решение обратной задачи с порядком $ O(\varepsilon) $ или $O(\varepsilon^2).$
- Ключевые слова
- Дата публикации
- 19.09.2025
- Год выхода
- 2025
- Всего подписок
- 0
- Всего просмотров
- 8
Библиография
- 1. Тихонов А.Н., Самарский А.А. Уравнения математической физики. М., 1999.
- 2. Денисов А.М., Лукшин А.В. Математические модели однокомпонентной динамики сорбции. М., 1989.
- 3. Денисов А.М. Приближенное решение обратных задач для уравнения теплопроводности с сингулярным возмущением // Журн. вычислит. математики и мат. физики. 2021. Т. 61. № 12. С. 2040-2049.
- 4. Денисов А.М. Приближенное решение обратной задачи для интегродифференциального уравнения теплопроводности с сингулярным возмущением // Журн. вычислит. математики и мат. физики. 2023. Т. 63. № 5. С. 795-802.
- 5. Латтес Р., Лионс Ж.-Л. Метод квазиобращения и его приложения. М., 1970.
- 6. Иванов В.К. Задача квазиобращения для уравнения теплопроводности в равномерной метрике // Дифференц. уравнения. 1972. Т. 8. № 4. С. 652-658.
- 7. Самарский А.А., Вабищевич П.Н. Численные методы решения обратных задач математической физики. М., 2004.
- 8. Короткий А.И., Цепелев И.А., Исмаил-заде А.Е. Численное моделирование обратных ретроспективных задач тепловой конвекции с приложениями к задачам геодинамики // Изв. Уральского ун-та. 2008. № 58. С. 78-87.
- 9. Табаринцева Е.В., Менихес Л.Д., Дрозин А.Д. О решении граничной обратной задачи методом квазиобращения // Вестн. Южно-Уральского гос. ун-та. Сер. Математика. Механика. Физика. 2012. Вып. 6. С. 8-13.
- 10. Денисов А.М. Асимптотика решений обратных задач для гиперболических уравнений с малым параметром при старшей производной // Журн. вычислит. математики и мат. физики. 2013. Т. 53. № 5. С. 744-752.
- 11. Belov Yu.Ya., Kopylova V.G. Determination of source function in composite type system of equations // Журн. Сибирского федерал. ун-та. Сер. Математика и физика. 2014. Т. 7. Вып. 3. С. 275-288.
- 12. Денисов А.М., Соловьева С.И. Численное решение обратных задач для гиперболического уравнения с малым параметром при старшей производной // Дифференц. уравнения. 2018. Т. 54. № 7. С. 919-928.
- 13. Lukyanenko D.V., Shishlenin M.A., Volkov V.T. Asymptotic analysis of solving an inverse boundary value problem for a nonlinear singularly perturbed time-periodic reaction-diffusion-advection equation // J. Inverse and Ill-Posed Problems. 2019. V. 27. № 5. P. 745-758.
- 14. Lukyanenko D.V., Borzunov A.A., Shishlenin M.A. Solving coefficient inverse problems for a nonlinear singularly perturbed equations of the reaction-diffusion-advection type with data on the position of reaction front // Comm. in Nonlin. Sci. Numer. Simulation. 2021. V. 99. P. 105824.