RAS MathematicsДифференциальные уравнения Differential Equations

  • ISSN (Print) 0374-0641
  • ISSN (Online) 3034-5030

On the Darboux Problem for Hyperbolic Systems

PII
10.31857/S0374064123050084-1
DOI
10.31857/S0374064123050084
Publication type
Article
Status
Published
Authors
Volume/ Edition
Volume 59 / Issue number 5
Pages
642-651
Abstract
For a hyperbolic system with simple characteristics in the -dimensional space of independent variables, the existence and uniqueness of a solution of the Darboux problem is proved. The Riemann–Hadamard matrix is determined, and the solution of the Darboux problem is constructed in terms of this matrix. As an example of application of the results, the solution of the Darboux problem for a system with four independent variables is constructed in detail.
Keywords
Date of publication
19.09.2025
Year of publication
2025
Number of purchasers
0
Views
10

References

  1. 1. Бицадзе А.В. Некоторые классы уравнений в частных производных. М., 1981.
  2. 2. Моисеев Е.И. Уравнения смешанного типа со спектральным параметром. М., 1988.
  3. 3. Сабитов К.Б., Шарафутдинова Г.Г. Задачи Коши-Гурса для вырождающегося гиперболического уравнения // Изв. вузов. Математика. 2003. № 5. С. 21-29.
  4. 4. Джохадзе О.М., Харибегашвили С.С. Некоторые свойства функций Римана и Римана-Адамара для линейных гиперболических уравнений второго порядка и их приложения // Дифференц. уравнения. 2011. Т. 47. № 4. С. 477-492.
  5. 5. Миронов А.Н. Задача Дарбу для уравнения Бианки третьего порядка // Мат. заметки. 2017. Т. 102. Вып. 1. С. 64-71.
  6. 6. Миронов А.Н. Задача Дарбу для уравнения Бианки четвёртого порядка // Дифференц. уравнения. 2021. Т. 57. № 3. С. 349-363.
  7. 7. Бицадзе А.В. О структурных свойствах решений гиперболических систем уравнений с частными производными // Мат. моделирование. 1994. Т. 6. № 6. С. 22-31.
  8. 8. Чекмарев Т.В. Формулы решения задачи Гурса для одной линейной системы уравнений с частными производными // Дифференц. уравнения. 1982. Т. 18. № 9. С. 1614-1622.
  9. 9. Mironova L.B. Boundary-value problems with data on characteristics for hyperbolic systems of equations // Lobachevskii J. of Math. 2020. V. 41. № 3. P. 400-406.
  10. 10. Миронов А.Н., Миронова Л.Б. Метод Римана-Адамара для одной системы в трёхмерном пространстве // Дифференц. уравнения. 2021. Т. 57. № 8. С. 1063-1070.
  11. 11. Миронова Л.Б. О методе Римана в $\\mathbbR^n$ для одной системы с кратными характеристиками // Изв. вузов. Математика. 2006. № 1. С. 34-39.
QR
Translate

Indexing

Scopus

Scopus

Scopus

Crossref

Scopus

Higher Attestation Commission

At the Ministry of Education and Science of the Russian Federation

Scopus

Scientific Electronic Library