ОМНДифференциальные уравнения Differential Equations

  • ISSN (Print) 0374-0641
  • ISSN (Online) 3034-5030

О фундаментальной матрице решений плоской анизотропной теории упругости

Код статьи
10.31857/S0374064123050072-1
DOI
10.31857/S0374064123050072
Тип публикации
Статья
Статус публикации
Опубликовано
Авторы
Том/ Выпуск
Том 59 / Номер выпуска 5
Страницы
635-641
Аннотация
Приведено явное выражение (в полярных координатах) фундаментальной матрицы решений системы Ламе плоской анизотропной теории упругости. Показано, что оператор свёртки этой матрицы в конечной области с ляпуновской границей ограничен в пространствах Гёльдера $C^\mu\to C^{2,\mu}.$ Аналогичный результат установлен и для бесконечной области в соответствующих весовых пространствах Гёльдера (со степенным поведением на бесконечности).
Ключевые слова
Дата публикации
18.09.2025
Год выхода
2025
Всего подписок
0
Всего просмотров
8

Библиография

  1. 1. Купрадзе В.Д. Методы потенциала в теории упругости. М., 1963.
  2. 2. Солдатов А.П. К теории анизотропной плоской упругости // Соврем. математика. Фунд. направления. 2016. Т. 60. С. 114-166.
  3. 3. Митин С.П., Солдатов А.П. О решении задачи Дирихле для неоднородной системы Ламе с младшими коэффициентами // Проблемы мат. анализа. 2021. Т. 110. С. 51-58.
  4. 4. Солдатов А.П. Сингулярные интегральные операторы и эллиптические краевые задачи // Соврем. математика. Фунд. направления. 2017. Т. 63. С. 1-189.
  5. 5. Отелбаев М., Солдатов А.П. Интегральные представления вектор-функций, основанные на параметриксе эллиптических систем первого порядка // Журн. вычислит. математики и мат. физики. 2021. Т. 61. № 1. С. 90-99.
  6. 6. Леви Е.Е. О линейных уравнениях с частными производными эллиптического типа // Успехи мат. наук. 1940. Т. 8. С. 249-292.
QR
Перевести

Индексирование

Scopus

Scopus

Scopus

Crossref

Scopus

Высшая аттестационная комиссия

При Министерстве образования и науки Российской Федерации

Scopus

Научная электронная библиотека