ОМНДифференциальные уравнения Differential Equations

  • ISSN (Print) 0374-0641
  • ISSN (Online) 3034-5030

К исследованию робастной экспоненциальной устойчивости непрерывных и дискретных систем

Код статьи
10.31857/S0374064123040027-1
DOI
10.31857/S0374064123040027
Тип публикации
Статья
Статус публикации
Опубликовано
Авторы
Том/ Выпуск
Том 59 / Номер выпуска 4
Страницы
446-455
Аннотация
Предложена методика получения достаточных условий робастной экспоненциальной устойчивости параметрически неопределённой системы. Данная методика применяется для исследования как непрерывных, так и дискретных параметрически неопределённых систем. Общая функция Ляпунова выбрана в виде положительно определённой квадратичной формы, которая является функцией Ляпунова для системы при конкретном значении параметра и удовлетворяет ограничениям на первую производную (первую разность). Применение предложенной методики проиллюстрировано на конкретных примерах.
Ключевые слова
Дата публикации
18.09.2025
Год выхода
2025
Всего подписок
0
Всего просмотров
6

Библиография

  1. 1. Поляк Б.Т., Щербаков П.С. Робастная устойчивость и управление. М., 2002.
  2. 2. Поляк Б.Т., Хлебников М.В., Щербаков П.С. Управление линейными системами при внешних возмущениях. Техника линейных матричных неравенств. М., 2014.
  3. 3. Харитонов В.Л. Об устойчивости положения равновесия семейства систем линейных дифференциальных уравнений // Дифференц. уравнения. 1978. Т. 14. № 11. С. 2086-2088.
  4. 4. Джури Э.И. Робастность дискретных систем // Автоматика и телемеханика. 1990. Вып. 5. С. 5-38.
  5. 5. Антоновская О.Г. О максимальном ограничении знакоотрицательности первой производной (первой разности) квадратичной функции Ляпунова // Дифференц. уравнения. 2003. Т. 39. № 11. С. 1562-1563.
  6. 6. Антоновская О.Г. О сохранении квадратичной функции Ляпунова линейной дифференциальной автономной системы при стационарных возмущениях её коэффициентов // Дифференц. уравнения. 2023. Т. 59. № 3. С. 295-302.
  7. 7. Гантмахер Ф.Р. Теория матриц. М., 1967.
  8. 8. Антоновская О.Г. Построение квадратичных функций Ляпунова, удовлетворяющих заданным ограничениям, для непрерывных и дискретных динамических систем // Изв. вузов. Математика. 2004. № 2 (501). С. 19-23.
  9. 9. Антоновская О.Г. О построении квадратичной функции Ляпунова с заданными свойствами // Дифференц. уравнения. 2013. Т. 49. № 9. С. 1220-1224.
  10. 10. Антоновская О.Г. Об определении коэффициентов квадратичной функции Ляпунова с заданными свойствами // Дифференц. уравнения. 2016. Т. 52. № 3. С. 275-281.
  11. 11. Неймарк Ю.И. Динамические системы и управляемые процессы. М., 2010.
  12. 12. Неймарк Ю.И. Робастная устойчивость и Д-разбиение // Автоматика и телемеханика. 1992. Вып. 7. С. 10-18.
  13. 13. Антоновская О.Г., Горюнов В.И. Об одном способе оценки размеров области притяжения неподвижной точки нелинейного точечного отображения произвольной размерности // Изв. вузов. Математика. 2016. № 12. С. 12-18.
  14. 14. Антоновская О.Г. О пределах изменения первой разности квадратичной функции Ляпунова на заданном её сечении // Мат. моделирование и оптимальное управление. Вестн. Нижегородского гос. ун-та. 2001. № 1 (26). С. 65-70.
QR
Перевести

Индексирование

Scopus

Scopus

Scopus

Crossref

Scopus

Высшая аттестационная комиссия

При Министерстве образования и науки Российской Федерации

Scopus

Научная электронная библиотека