- Код статьи
- 10.31857/S0374064123030135-1
- DOI
- 10.31857/S0374064123030135
- Тип публикации
- Статья
- Статус публикации
- Опубликовано
- Авторы
- Том/ Выпуск
- Том 59 / Номер выпуска 3
- Страницы
- 422-431
- Аннотация
- Исследованы экстремали принципа максимума Понтрягина задач, связанных с перемещением в поле скоростей. Управления являются непрерывными функциями. Показано, что в фазовом пространстве существует окрестность финальной точки, через каждую точку которой проходит единственная траектория экстремали, ведущая в финальную точку. Также показано, что если траектория экстремали содержит точку, через которую проходит другая экстремаль с таким же значением функционала, то эта точка отсекает от траектории неоптимальную часть. Доказано, что оставшаяся часть, ведущая в финальную точку, оптимальна.
- Ключевые слова
- Дата публикации
- 18.09.2025
- Год выхода
- 2025
- Всего подписок
- 0
- Всего просмотров
- 8
Библиография
- 1. Арутюнов А.В., Магарил-Ильяев Г.Г., Тихомиров В.М. Принцип максимума Понтрягина. Доказательство и приложения. М., 2006.
- 2. Bin Li, Chao Xu, Kok Lay Teo, Jian Chu. Time optimal Zermelo's navigation problem with moving and fixed obstacles // Appl. Math. and Comput. 2013. V. 224. P. 866-875.
- 3. Chertovskih R., Karamzin D., Khalil N.T., Pereira F.L. An indirect numerical method for a time-optimal state-constrained control problem in a steady two-dimensional fluid flow // Proc. of the 2018 IEEE Oceanics Engineering Society Autonomous Underwater Vehicle Sympos. 2019. P. 1-6.
- 4. Chertovskih R., Karamzin D., Khalil N.T., Lobo Pereira F. Regular path-constrained time-optimal control problems in three-dimensional flow fields // Eur. J. of Control. 2020. V. 56. P. 98-106.
- 5. Алексеев В.М., Тихомиров В.М., Фомин С.В. Оптимальное управление. М., 1979.
- 6. Зубов В.И. Теория колебаний. М., 1979.
- 7. Николенко П.В. О наискорейших перемещениях в поле скоростей // Дифференц. уравнения. 2011. Т. 47. № 5. С. 738-745.
- 8. Николенко П.В. Множество неоднозначности и задача о наискорейших перемещениях в поле скоростей // Дифференц. уравнения. 2014. Т. 50. № 3. С. 372-381.
- 9. Николенко П.В. О множестве разреза в некоторых экстремальных задачах, связанных с перемещением в поле скоростей // Изв. вузов. Северо-Кавказский регион. Естеств. науки. 2017. № 4. С. 37-44.
- 10. Болтянский В.Г. Математические методы оптимального управления. М., 1969.