ОМНДифференциальные уравнения Differential Equations

  • ISSN (Print) 0374-0641
  • ISSN (Online) 3034-5030

Обратные аттракторы модели Бингама

Код статьи
10.31857/S0374064123030081-1
DOI
10.31857/S0374064123030081
Тип публикации
Статья
Статус публикации
Опубликовано
Авторы
Том/ Выпуск
Том 59 / Номер выпуска 3
Страницы
374-379
Аннотация
На основе теории траекторных обратных аттракторов исследуется качественное поведение слабых решений для модели Бингама с периодическими условиями по пространственным переменным. Для рассматриваемой модели вводится семейство траекторных пространств и доказывается существование обратных аттракторов.
Ключевые слова
Дата публикации
18.09.2025
Год выхода
2025
Всего подписок
0
Всего просмотров
7

Библиография

  1. 1. Chepyzhov V.V., Vishik M.I. Evolution equations and their trajectory attractors // J. Math. Pures Appl. 1997. V. 76. № 10. P. 913-964.
  2. 2. Sell G.R. Global attractors for the three-dimensional Navier-Stokes equations // J. of Dynamics and Differ. Equat. 1996. V. 8. № 1. P. 1-33.
  3. 3. Zvyagin V., Vorotnikov D. Topological Approximation Methods for Evolutionary Problems of Nonlinear Hydrodynamics. Berlin, 2008.
  4. 4. Zvyagin V. Attractors theory for autonomous systems of hydrodynamics and its application to Bingham model of fluid motion // Lobachevskii J. Math. 2017. V. 38. P. 767-777.
  5. 5. Устюжанинова А.С., Турбин М.В. Траекторные и глобальные аттракторы для модифицированной модели Кельвина-Фойгта // Сиб. журн. индустр. математики. 2021. Т. 24. № 1. С. 126-138.
  6. 6. Звягин В.Г., Кондратьев С.К. Аттракторы уравнений неньютоновской гидродинамики // Успехи мат. наук. 2014. Т. 69. № 5 (419). С. 81-156.
  7. 7. Vorotnikov D. Asymptotic behaviour of the non-autonomous 3D Navier-Stokes problem with coercive force // J. Differ. Equat. 2011. V. 251. № 8. P. 2209-2225.
  8. 8. Turbin M., Ustiuzhaninova A. Pullback attractors for weak solution to modified Kelvin-Voigt model // Evolution Equations аnd Control Theory. 2022. V. 11. № 6. P. 2055-2072.
  9. 9. Устюжанинова А.С. Pullback-аттракторы модифицированной модели Кельвина-Фойгта // Изв. вузов. Математика. 2021. Т. 5. С. 98-104.
  10. 10. Лионс Ж.-Л., Мадженес Э. Неоднородные граничные задачи и их приложения. М., 1971.
  11. 11. Shelukhin V.V. Bingham viscoplastic as a limit of non-Newtonian fluids // J. of Math. Fluid Mech. 2022. V. 4. P. 109-127.
  12. 12. Серегин Г.А. О динамической системе, порождённой двумерными уравнениями движения среды Бингама // Зап. науч. сем. ЛОМИ. 1991. Т. 181. С. 128-142.
  13. 13. Звягин В.Г., Турбин М.В. О существовании аттракторов для аппроксимаций модели Бингама и их сходимости к аттракторам исходной модели // Сиб. мат. журн. 2022. Т. 63. № 4. С. 842-859.
  14. 14. Temam R. Navier-Stokes Equations and Nonlinear Functional Analysis. Philadelphia, 1995.
  15. 15. Звягин В.Г., Звягин А.В., Турбин М.В. Оптимальное управление с обратной связью для модели Бингама с периодическими условиями по пространственным переменным // Зап. науч. сем. ПОМИ. 2018. Т. 477. С. 54-86.
  16. 16. Simon J. Compact sets in the space $L^p(0,T; B)$ // Ann. Mat. Pura Appl. 1986. V. 146. P. 65-96.
QR
Перевести

Индексирование

Scopus

Scopus

Scopus

Crossref

Scopus

Высшая аттестационная комиссия

При Министерстве образования и науки Российской Федерации

Scopus

Научная электронная библиотека