- Код статьи
- 10.31857/S0374064123030056-1
- DOI
- 10.31857/S0374064123030056
- Тип публикации
- Статья
- Статус публикации
- Опубликовано
- Авторы
- Том/ Выпуск
- Том 59 / Номер выпуска 3
- Страницы
- 350-357
- Аннотация
- Для параболо-гиперболического уравнения с двумя линиями изменения типа, содержащего нелинейное нагруженное слагаемое, исследуется нелокальная задача с интегральным условием склеивания. Единственность решения задачи доказывается методом интегралов энергии, а существование — с применением теории интегральных уравнений. Определяются классы и достаточные условия для заданных функций, обеспечивающих однозначную разрешимость исследуемой задачи.
- Ключевые слова
- Дата публикации
- 18.09.2025
- Год выхода
- 2025
- Всего подписок
- 0
- Всего просмотров
- 5
Библиография
- 1. Kilbas A.A., Srivastava H.M., Trujillo J.J. Theory and applications of fractional differential equations // North-Holland Mathematics Studies. V. 204. Amsterdam, 2006.
- 2. Kadirkulov B.J. Boundary problems for mixed parabolic-hyperbolic equations with two lines of changing type and fractional derivative // Electronic J. of Differ. Equat. 2014. V. 57. P. 1-7.
- 3. Сабитов К.Б., Мелишева Е.П. Задача Дирихле для нагруженного уравнения смешанного типа в прямоугольной области // Изв. вузов. Математика. 2013. № 7. С. 62-76.
- 4. Сабитов К.Б. Начально-граничная задача для параболо-гиперболического уравнения с нагруженными слагаемыми // Изв. вузов. Математика. 2015. № 6. С. 31-42.
- 5. Abdullaev O.Kh., Sadarangani K. Non-local problems with integral gluing condition for loaded mixed type equations involving the Caputo fractional derivative // Electron. J. of Differ. Equat. 2016. V. 164. P. 1-10.
- 6. Исломов Б.И., Абдуллаев О.Х. Задача типа Геллерштедта для нагруженного уравнения параболико-гиперболического типа с операторами Капуто и Эрдели-Кобера дробного порядка // Изв. вузов. Математика. 2020. № 106. С. 33-46.
- 7. Ефимов А.В. О краевых задачах с операторами Сайго для уравнения смешанного типа с дробной производной // Вестн. Самарского гос. техн. ун-та. 2004. Т. 26. С. 16-20.
- 8. Елеев В.А., Лесев В.Н. О двух краевых задачах для смешанных уравнений с перпендикулярными линиями изменения типа // Владикавказ. мат. журн. 2001. Т. 3. № 4. С. 9-22.
- 9. Karimov E.T., Sotvoldiev A.I. Existence of solutions to non-local problems for parabolic-hyperbolic equations with three lines of type changing // Electron. J. of Differ. Equat. 2013. V. 138. P. 1-5.
- 10. Исломов Б., Холбеков Ж. Аалог задачи Трикоми для нагруженного параболо-гиперболического уравнения с тремя линиями изменения типа-I // Узбекский мат. журн. 2015. № 4. С. 47-57.
- 11. Yuldashev T.K., Abdullaev O.Kh. Unique solvability of a boundary value problem for a loaded fractional parabolic-hyperbolic equation with nonlinear terms // Lobachevskii J. of Math. 2021. V. 42. № 5. P. 1113-1123.
- 12. Abdullaev O.Kh. Solvability of BVPs for the parabolic-hyperbolic equation with non-linear loaded term // J. Sib. Fed. Univ. Math. Phys. 2021. V. 14. № 2. P. 133-145.
- 13. Псху А.В. Уравнения в частных производных дробного порядка. М., 2005.
- 14. Михлин С.Г. Лекции по линейным интегральным уравнениям. М., 1959.
- 15. Сопуев А., Дж. Т. Джураев Краевые задачи для вырождающегося параболо-гиперболического уравнения // Дифференц. уравнения. 1989. Т. 25. № 6. С. 1009-1015.
- 16. Mamchuev M.O. Solutions of the main boundary value problems for the time-fractional telegraph equation by the Green function method // Fract. Calc. Appl. Anal. 2017. V. 20. № 1. P. 190-211.