- PII
- 10.31857/S0374064123010090-1
- DOI
- 10.31857/S0374064123010090
- Publication type
- Article
- Status
- Published
- Authors
- Volume/ Edition
- Volume 59 / Issue number 1
- Pages
- 100-114
- Abstract
- We prove a necessary and sufficient condition for the linearizability of single-input nonlinear control systems in the class of transformations containing time scaling and preserving the state manifold. A description is given for systems that are obtained by a 1-fold prolongation of a single-input nonlinear control system and are -orbitally linearizable. It is proved that the -orbital linearizability of the system obtained by a 1-fold prolongation of a single-input affine control system implies the -orbital linearizability of the original system as well. It is shown that if the system obtained by a fold prolongation of a single-input nonlinear control system, where, is orbitally linearizable, then the system obtained from the original system by its 1-fold prolongation is -orbitally linearizable as well.
- Keywords
- Date of publication
- 19.09.2025
- Year of publication
- 2025
- Number of purchasers
- 0
- Views
- 8
References
- 1. Brockett R.W. Feedback invariants for nonlinear systems // Proc. of IFAC Congress. Helsinki, 1978. P. 1115-1120.
- 2. Jakubczyk B., Respondek W. On linearization of control systems // Bull. Acad. Polon. Sci. Ser. Math. 1980. V. 28. P. 517-522.
- 3. Hunt L.R., Su R. Linear equivalents of nonlinear time-varying systems // Proc. Symp. Math. Theory of Networks and Systems. 1981. P. 119-123.
- 4. Gardner R.B., Shadwick W.F. The GS algorithm for exact linearization to Brunovsky normal form // IEEE Trans. on Automat. Control. 1992. V. 37. № 2. P. 224-230.
- 5. Krener A. Approximate linearization by state feedback and coordinate change // Systems and Control Lett. 1984. № 5. P. 181-185.
- 6. Marino R. On the largest feedback linearizable subsystem // Systems and Control Lett. 1986. № 6. P. 345-351.
- 7. Isidori A. Nonlinear Control Systems. London, 1995.
- 8. Fliess M., Levine J., Martin P., Rouchon P. Flatness and defect of nonlinear systems: introductory theory and examples // Int. J. of Control. 1995. V. 61. P. 1327-1361.
- 9. Charlet B., Levine J., Marino R. On dynamic feedback linearization // System Control Lett. 1989. V. 13. P. 143-151.
- 10. Sampei M., Furuta K. On time scaling for nonlinear systems: application to linearization // IEEE Trans. on Automat. Control. 1986. V. 31. P. 459-462.
- 11. Fliess M., Levine J., Martin P., Rouchon P. A Lie-Backlund approach to equivalence and flatness of nonlinear systems. IEEE Trans. on Automat. Control. 1999. V. 44. № 5. P. 922-937.
- 12. Kiss B., Szadeczky-Kardoss E. Tracking control of the orbitally flat kinematic car with a new time-scaling input // 46th IEEE Conf. on Decision and Control. New Orleans, 2007. P. 1969-1974.
- 13. Vollmer U., Raisch J. Control of batch cooling crystallisers based on orbital flatness // Int. J. of Control. 2003. V. 76. P. 1635-1643.
- 14. Respondek W. Orbital feedback linearization of single-input nonlinear control systems // Proc. of the IFAC Sympos. on Nonlinear Control Systems. Enschede, 1998. P. 499-504.
- 15. Фетисов Д.А. А-орбитальная линеаризация аффинных систем // Дифференц. уравнения. 2018. Т. 54. № 11. С. 1518-1532.
- 16. Guay M. An algorithm for orbital feedback linearization of single-input control affine systems // Systems and Control Lett. 1999. V. 38. № 4-5. P. 271-281.
- 17. Li S.-J., Respondek W. Orbital feedback linearization for multi-input control systems // Int. J. of Robust and Nonlin. Control. 2015. V. 25. № 9. P. 1352-1378.
- 18. Fetisov D.A. A-orbital feedback linearization of multiinput control affine systems // Int. J. of Robust and Nonlin. Control. 2020. V. 30. № 14. P. 5602-5627.
- 19. Fetisov D.A. On some approaches to linearization of affine systems // IFAC-PapersOnline. 2019. V. 52. № 16. P. 700-705.