RAS MathematicsДифференциальные уравнения Differential Equations

  • ISSN (Print) 0374-0641
  • ISSN (Online) 3034-5030

Projector Approach to Constructing the Asymptotics of Solution of Initial Value Problems for Weakly Nonlinear Discrete Systems with Small Step in the Critical Case

PII
10.31857/S0374064123010077-1
DOI
10.31857/S0374064123010077
Publication type
Article
Status
Published
Authors
Volume/ Edition
Volume 59 / Issue number 1
Pages
73-84
Abstract
An algorithm for constructing an asymptotic solution containing boundary functions for an initial value problem for a weakly nonlinear system of discrete equations with small step in the critical case under certain conditions is given in the article by V.F. Butuzov and A.B. Vasil’eva in Differ. Uravn., 1970, vol. 6, no. 4, pp. 650–664. In the present paper, orthogonal projectors are used to construct the asymptotics of the solution of this problem. This projector approach greatly simplifies the understanding of the algorithm for constructing the asymptotics and permits explicitly writing the problems from which one can find the terms of any order in the asymptotics of the solution.
Keywords
Date of publication
19.09.2025
Year of publication
2025
Number of purchasers
0
Views
11

References

  1. 1. Бутузов В.Ф., Васильева А.Б. Дифференциальные и разностные системы уравнений с малым параметром в случае, когда невозмущённая (вырожденная) система расположена на спектре // Дифференц. уравнения. 1970. T. 6. № 4. С. 650-664.
  2. 2. Васильева А.Б., Бутузов В.Ф. Сингулярно возмущенные уравнения в критических случаях. М., 1978.
  3. 3. Kurina G.A., Dmitriev M.G., Naidu D.S. Discrete singularly perturbed control problems (a survey) // Dyn. Contin. Discrete Impuls. Syst. Ser. B: Appl. Algorithms. 2017. V. 24. P. 335-370.
  4. 4. Sibuya Y. Some global properties of matrices of functions of one variable // Math. Ann. 1965. V. 161. P. 67-77.
  5. 5. Kurina G. Projector approach to constructing asymptotic solution of initial value problems for singularly perturbed systems in critical case // Axioms. 2019. V. 8. № 2. P. 56-60.
  6. 6. Курина Г.А., Хоай Н.Т. Проекторный подход к алгоритму Бутузова-Нефедова асимптотического решения одного класса сингулярно возмущённых задач в критическом случае // Журн. вычислит. математики и мат. физики. 2020. Т. 60. № 12. С. 2073-2084.
  7. 7. Kurina G.A., Hoai N.T. Projector approach for constructing the zero order asymptotic solution for the singularly perturbed linear-quadratic control problem in a critical case // AIP Conf. Proc. Int. Conf. Analysis and Applied Mathematics (ICAAM 2018). 2018. V. 1997. P. 430-436.
  8. 8. Каto T. Perturbation Theory for Linear Operators. Berlin, Heidelberg, 1966.
  9. 9. Гайшун И.В. Системы с дискретным временем. Минск, 2001.
  10. 10. Horn R.A., Johnson C.R. Matrix Analysis. Cambridge, 2013.
QR
Translate

Indexing

Scopus

Scopus

Scopus

Crossref

Scopus

Higher Attestation Commission

At the Ministry of Education and Science of the Russian Federation

Scopus

Scientific Electronic Library